CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Zero-energy modes in serially coupled double quantum dots |
Fu-Li Sun(孙复莉)1, Zhen-Hua Li(李振华)2, Jian-Hua Wei(魏建华)1 |
1 Department of Physics & Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China; 2 School of Physical Science and Technology&Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China |
|
|
Abstract We investigate symmetrically coupled double quantum dots via the hierarchical equations of motion method and propose a novel zero-energy mode (ZEM) at a temperature above the spin singlet-triplet transition temperature. Owing to the resonance of electron quasi-particle and hole quasi-particle, ZEM has a peak at ω=0 in the spectral density function. We further examine the effect of the magnetic field on the ZEM, where an entanglement of spin and charge has been determined; therefore, the magnetic field can split the ZEM in the spectra.
|
Received: 23 February 2020
Revised: 23 March 2020
Accepted manuscript online:
|
PACS:
|
73.21.La
|
(Quantum dots)
|
|
73.63.Kv
|
(Quantum dots)
|
|
74.62.-c
|
(Transition temperature variations, phase diagrams)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774418 and 11374363). |
Corresponding Authors:
Jian-Hua Wei
E-mail: wjh@ruc.edu.cn
|
Cite this article:
Fu-Li Sun(孙复莉), Zhen-Hua Li(李振华), Jian-Hua Wei(魏建华) Zero-energy modes in serially coupled double quantum dots 2020 Chin. Phys. B 29 067302
|
[1] |
Kayyalha M, Xiao D, Zhang R X, Shin J, Jiang J, Wang F, Zhao Y F, Xiao R, Zhang L, Fijalkowski K M, Mandal P, Winnerlein M, Gould C, Li Q, Molenkamp L W, Chan M H W, Samarth N and Chang C Z 2020 Science 367 64
|
[2] |
He Q L, Pan L, Stern A L, Burks E C, Che X Y, Yin G, Wang J, Lian B, Zhou Q, Choi E S, Murata K, Kou X F, Chen Z J, Nie T X, Shao Q M, Fan Y B, Zhang S C, Liu K, Xia J and Wang K L 2017 Science 357 294
|
[3] |
Majorana E 2008 Il Nuovo Cimento (1924-1942) 14 171
|
[4] |
Wilczek F 2009 Nature Physics 5 614
|
[5] |
Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001
|
[6] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[7] |
Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
|
[8] |
Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003
|
[9] |
Das A, Ronen Y, Most Y, Oreg Y, Heiblum M and Shtrikman H 2012 Nature Physics 8 887
|
[10] |
Elliott S R and Franz M 2015 Rev. Mod. Phys. 87 137
|
[11] |
Sarma S D, Freedman M and Nayak C 2015 npj Quantum Information 1 15001
|
[12] |
O'Brien T E, Rożek P and Akhmerov A R 2018 Phys. Rev. Lett. 120 220504
|
[13] |
Fan X, Huang W J, Ma T X and Wang L G 2016 Phys. Rev. B 93 165137
|
[14] |
Alhassid Y 2000 Rev. Mod. Phys. 72 895
|
[15] |
Aleiner I L, Brouwer P W and Glazman L I 2002 Phys. Rep. 358 309
|
[16] |
van der Wiel W G, De Franceschi S, Elzerman J M, Fujisawa T, Tarucha S and Kouwenhoven L P 2002 Rev. Mod. Phys. 75 1
|
[17] |
Reimann M and Manninen M 2002 Rev. Mod. Phys. 74 1283
|
[18] |
Zwanenburg F A, Dzurak A S, Morello A, Simmons M Y, Hollenberg L C L, Klimeck G, Rogge S, Coppersmith S N and Eriksson M A 2013 Rev. Mod. Phys. 85 961
|
[19] |
Jin J S, Zheng X and Yan Y J 2008 J. Chem. Phys. 128 234703
|
[20] |
Härtle R, Cohen G, Reichman D R and Millis A J 2013 Phys. Rev. B 88 235426
|
[21] |
Härtle R and Millis A J 2014 Phys. Rev. B 90 245426
|
[22] |
Härtle R, Cohen G, Reichman D R and Millis A J 2015 Phys. Rev. B 92 085430
|
[23] |
Schinabeck C, Erpenbeck A, Härtle R and Thoss M 2016 Phys. Rev. B 94 201407
|
[24] |
Schinabeck C, Härtle R and Thoss M 2018 Phys. Rev. B 97 235429
|
[25] |
Wei J H and Yan Y J 2011 arXiv:1108.5955
|
[26] |
Li Z H, Tong N H, Zheng X, Hou D, Wei J H, Hu J and Yan Y J 2012 Phys. Rev. Lett. 109 266403
|
[27] |
Yan Y J 2014 J. Chem. Phys. 140 054105
|
[28] |
Yan Y J, Jin J S, Xu R X and Zheng X 2016 Frontiers Phys. 11 110306
|
[29] |
Zheng X, Jin J S, Welack S, Luo M and Yan Y J 2009 J. Chem. Phys. 130 164708
|
[30] |
Zheng X, Yan Y J and Di Ventra M 2013 Phys. Rev. Lett. 111 086601
|
[31] |
Hu J, Xu R X and Yan Y J 2010 J. Chem. Phys. 133 101106
|
[32] |
Hu J, Luo M, Jiang F, Xu R X and Yan Y J 2011 J. Chem. Phys. 134 244106
|
[33] |
Kondo J 1968 Phys. Rev. 169 437
|
[34] |
Hewson A C 1993 The Kondo Problem to Heavy Fermions (Cambridge: Cambridge University Press) pp. 47-65
|
[35] |
López R, Aguado R and Platero G 2002 Phys. Rev. Lett. 89 136802
|
[36] |
Maune B M, Borselli M G, Huang B, Ladd T D, Deelman P W, Holabird K S, Kiselev A A, Alvarado-Rodriguez I, Ross R S, Schmitz A E, Sokolich M, Watson C A, Gyure M F and Hunter A T 2012 Nature 481 344
|
[37] |
Li Z H, Cheng Y X, Wei J H, Zheng X and Yan Y J 2018 Phys. Rev. B 98 115133
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|