Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 043103    DOI: 10.1088/1674-1056/ab6587
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Re effects in model Ni-based superalloys investigated with first-principles calculations and atom probe tomography

Dianwu Wang(王殿武)1, Chongyu Wang(王崇愚)1,2, Tao Yu(于涛)1, Wenqing Liu(刘文庆)3
1 Central Iron and Steel Research Institute,Beijing 100081,China;
2 Department of Physics,Tsinghua University,Beijing 100084,China;
3 Key Laboratory for Microstructures,Shanghai University,Shanghai 200444,China
Abstract  The phase partition and site preference of Re atoms in a ternary Ni-Al-Re model alloy, including the electronic structure of different Re configurations, are investigated with first-principles calculations and atom probe tomography. The Re distribution of single, nearest neighbor (NN), next-nearest neighbor (NNN), and cluster configurations are respectively designed in the models with γ and γ' phases. The results show that the Re atoms tend to entering γ' phase and the Re atoms prefer to occupy the Al sites in γ' phase. The Re cluster with a combination of NN and NNN Re-Re pair configuration is not preferred than the isolated Re atom in the Ni-based superalloys, and the configuration with isolated Re atom is more preferred in the system. Especially, the electronic states are analyzed and the energetic parameters are calculated. The electronic structure analyses show there exists strong Ni-Re electronic interaction and it is mainly contributed by the d-d hybridization. The characteristic features of the electronic states of the Re doping effects are also given. It is also found that Re atoms prefer the Al sites in γ' side at the interface. The density of states at or near the Fermi level and the d-d hybridizations of NN Ni-Re are found to be important in the systems.
Keywords:  Re distribution      first-principles calculations      atom probe tomography      Ni-based superalloys  
Received:  20 December 2019      Accepted manuscript online: 
PACS:  31.15.A- (Ab initio calculations)  
  31.15.ae (Electronic structure and bonding characteristics)  
  61.82.Bg (Metals and alloys)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0701503).
Corresponding Authors:  Chongyu Wang     E-mail:  cywang@mail.tsinghua.edu.cn

Cite this article: 

Dianwu Wang(王殿武), Chongyu Wang(王崇愚), Tao Yu(于涛), Wenqing Liu(刘文庆) Re effects in model Ni-based superalloys investigated with first-principles calculations and atom probe tomography 2020 Chin. Phys. B 29 043103

[1] Reed R C 2006 The Superalloys: Fundamentals and Applications (Cambridge University Press)
[2] Tin S, Zhang L, Hobbs R A, Yeh A C, Rae C M F and Broomfield B 2008 Superalloys 2008, eds. Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S and Woodard S A (Warrendale, PA: The Minerals, Metals & Materials Society) p. 81
[3] Murakumo T, Kobayashi T, Koizumi Y and Harada H 2004 Acta Mater. 52 3737
[4] Erickson G L 1996 Superalloys 1996, eds. Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, and Woodford D A (Warrendale, PA: The Minerals, Metals & Materials Society) p. 35
[5] Blavette D, Caron P and Khan T 1986 Scr. Metall. 20 1395
[6] Giamei A F and Anton D L 1985 Metall. Trans. A 16 1997
[7] Murakami H, Harada H and Bhadeshia H K D H 1994 Appl. Surf. Sci. 76-77 177
[8] Yu X X, Wang C Y, Zhang X N, Yan P and Zhang Ze 2014 J. Alloys Compd. 582 299
[9] Chen K, Zhao L R and Tse J S 2003 Mater. Sci. Eng. A 360 197
[10] Peng L, Peng P, Liu Y G, He S, Wei H, Jin T and Hu Z Q 2012 Comput. Mater. Sci. 63 292
[11] Liu F H and Wang C Y 2017 RSC Adv. 7 19124
[12] Wanderka N and Glatzel U 1995 Mater. Sci. Eng. A 203 69
[13] Rüsing J, Wanderka N, Czubayko U, Naundorf V, Mukherji D and Rösler J 2002 Scr. Mater. 46 235
[14] Zhu T, Wang C Y and Gan Y 2010 Acta Mater. 58 2045
[15] Mottura A, Finnis M W and Reed R C 2012 Acta Mater. 60 2866
[16] Lu B K, Wang C Y and Du Z H 2018 Chin. Phys. B 27 097102
[17] Ding Q Q, Li S Z, Chen L Q, Han X D, Zhang Ze, Yu Q and Li J X 2018 Acta Mater. 154 137
[18] Zhu T and Wang C Y 2005 Phys. Rev. B 72 014111
[19] Srinivasan R, Banerjee R, Hwang J Y, Viswanathan G B, Tiley J, Dimiduk D M and Fraser H L 2009 Phys. Rev. Lett. 102 086101
[20] Hwang J Y, Nag S, Singh A R P, Srinivasan R, Tiley J, Fraser H L and Banerjee R 2009 Scr. Mater. 61 92
[21] Reed R C, Yeh A C, Tin S, Babu S S and Miller M K 2004 Scr. Mater. 51 327
[22] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[23] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[24] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[25] Blöchl P E 1994 Phys. Rev. B 50 17953
[26] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[27] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[29] Miller M K 2000 Atom Probe Tomography: Analysis at the Atomic Level (New York: Springer Science & Business Media)
[30] Hellman O C, Vandenbroucke J A, Rüsing J, Isheim E and Seidman D N 2000 Microsc. Microanalysis 6 437
[31] Wang S Y, Wang C Y, Sun J H, Duan W H and Zhao D L 2001 Phys. Rev. B 65 035101
[32] Sun M, Li Z, Zhu G Z, Liu W Q, Liu S H and Wang C Y 2016 Commun. Comput. Phys. 20 603
[33] Wang C Y, Feng A, Gu B L, Liu F S and Chen Y 1988 Phys. Rev. B 38 3905
[34] Wang C Y and Zhao D L 1993 MRS Proc. 318 571
[35] Wang F H and Wang C Y 1998 Phys. Rev. B 57 289
[36] Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272
[37] Ellis D E and Painter G S 1970 Phys. Rev. B 2 2887
[38] Delley B, Ellis D E, Freeman A J, Baerends E J and Post D 1983 Phys. Rev. B 27 2132
[39] Xu J H, Oguchi T and Freeman A J 1987 Phys. Rev. B 36 4186
[40] Wen M R and Wang C Y 2016 RSC Adv. 6 77489
[1] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[2] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[3] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[9] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[10] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[11] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[12] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[13] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[14] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[15] First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices
Huihui He(何慧卉) and Shenyuan Yang(杨身园). Chin. Phys. B, 2022, 31(1): 017104.
No Suggested Reading articles found!