CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Structural and electrical transport properties of Dirac-like semimetal PdSn4 under high pressure |
Bowen Zhang(张博文)1,2, Chao An(安超)3,4, Yonghui Zhou(周永惠)1, Xuliang Chen(陈绪亮)1, Ying Zhou(周颖)3, Chunhua Chen(陈春华)1,2, Yifang Yuan(袁亦方)1,2, Zhaorong Yang(杨昭荣)1,3,5 |
1 Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China; 2 University of Science and Technology of China, Hefei 230026, China; 3 Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; 4 Key Laboratory of Structure and Functional Regulation of Hybrid Materials(Anhui University), Ministry of Education, Hefei 230601, China; 5 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China |
|
|
Abstract We conducted in-situ high-pressure synchrotron x-ray diffraction (XRD) and electrical transport measurements on Dirac-like semimetal PdSn4 in diamond anvil cells with quasi-hydrostatic pressure condition up to 44.5 GPa-52.0 GPa. The XRD data show that the ambient orthorhombic phase (Ccca) is stable with pressures to 44.5 GPa, and the lattice parameters and unit-cell volume decrease monotonously upon compression. The temperature dependence of the resistance exhibits a metallic conduction and follows a Fermi-liquid behavior below 50 K, both of which keep unchanged upon compression to 52.0 GPa. The magnetoresistance curve at 5 K maintains a linear feature in a magnetic field range of 2.5 T-7 T with increasing pressure to 20.0 GPa. Our results may provide pressure-transport constraints on the robustness of the Dirac fermions.
|
Received: 16 September 2019
Revised: 21 October 2019
Accepted manuscript online:
|
PACS:
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
61.05.C-
|
(X-ray diffraction and scattering)
|
|
72.15.-v
|
(Electronic conduction in metals and alloys)
|
|
74.62.Fj
|
(Effects of pressure)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0305700 and 2016YFA0401804), the National Natural Science Foundation of China (Grant Nos. U1632275, 11574323, 11874362, 11704387, and 11804344), the Natural Science Foundation of Anhui Province, China (Grant Nos. 1908085QA18, 1708085 QA19, and 1808085MA06), the Major Program of Development Foundation of Hefei Center for Physical Science and Technology, China (Grant No. 2018ZYFX002), and the Users with Excellence Project of Hefei Science Center of the Chinese Academy of Sciences (Grant No. 2018HSC-UE012). |
Corresponding Authors:
Chao An, Zhaorong Yang
E-mail: chaoan@ahu.edu.cn;zryang@issp.ac.cn
|
Cite this article:
Bowen Zhang(张博文), Chao An(安超), Yonghui Zhou(周永惠), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Chunhua Chen(陈春华), Yifang Yuan(袁亦方), Zhaorong Yang(杨昭荣) Structural and electrical transport properties of Dirac-like semimetal PdSn4 under high pressure 2019 Chin. Phys. B 28 126202
|
[1] |
Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z and Chen Y L 2014 Science 343 864
|
[2] |
Liu Z K, Jiang J, Zhou B, Wang Z J, Zhang Y, Weng H M, Prabhakaran D, Mo S K, Peng H, DudinP, Kim T, Hoesch M, Fang Z, Dai X, Shen Z X, Feng D L, Hussain Z and Chen Y L 2014 Nat. Mater. 13 677
|
[3] |
Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, Buchner B and Cava R J 2014 Phys. Rev. Lett. 113 027603
|
[4] |
Li Y W, Xia Y Y Y, Ekahana S A, Kumar N, Jiang J, Yang L X, Chen C, Liu C X, Yan B H, Felser C, Li G, Liu Z K and Chen Y L 2017 Phys. Rev. Mater. 1 074202
|
[5] |
Yan M, Huang H, Zhang K, Wang E, Yao W, Deng K, Wan G, Zhang H, Arita M, Yang H, Sun Z, Yao H, Wu Y, Fan S, Duan W and Zhou S 2017 Nat. Commun. 8 257
|
[6] |
Huang X C, Zhao L X, Long Y J, Wang P P, Chen D, Yang Z H, Liang H, Xue M Q, Weng H M, Fang Z, Dai X and Chen G F 2015 Phys. Rev. X 5 031023
|
[7] |
Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T and Ding H 2015 Phys. Rev. X 5 031013
|
[8] |
Xu N, Weng H M, Lv B Q, Matt C E, Park J, Bisti F, Strocov V N, Gawryluk D, Pomjakushina E, Conder K, Plumb N C, Radovic M, Autes G, Yazyev O V, Fang Z, Dai X, Qian T, Mesot J, Ding H and Shi M 2016 Nat. Commun. 7 11006
|
[9] |
Wang C L, Zhang Y, Huan J W, Nie S M, Liu G D, Liang A J, Zhang Y X, Shen B, Liu J, Hu C, Ding Y, Liu D F, Hu Y, He S L, Zhao L, Yu L, Hu J, Wei J, Mao Z Q, Shi Y G, Jia X W, Zhang F F, Zhang S J, Yang F, Wang Z M, Peng Q J, Weng H M, Dai X, Fang Z, Xu Z Y, Chen C T and Zhou X J 2016 Phys. Rev. B 94 241119(R)
|
[10] |
Bian G, Chang T R, Sankar R, Xu S Y, Zheng H, Neupert T, Chiu C K, Huang S M, Chang G, I B, Sanchez D S, Neupane M, Alidoust N, Liu C, Wang B K, Lee C C, Jeng H T, Zhang C L, Yuan Z J, Jia S, Bansil A, Chou F C, Lin H and Hasan M Z 2016 Nat. Commun. 7 10556
|
[11] |
Schoop L M, Ali M N, Straßer C, Topp A, Varykhalov A, Marchenko D, Duppel V, Parkin S S P, Lotsch B V and Ast C R 2016 Nat. Commun. 7 11696
|
[12] |
Neupane M, Belopolski I, Hosen M M, Sanchez D S, Sankar R, Szlawska M, Xu S Y, Dimitri K, Dhakal N, Maldonado P, Oppeneer P M, Kaczorowski D, Chou F C, Hasan M Z and Durakiewicz T 2016 Phys. Rev. B 93 201104(R)
|
[13] |
Wu Y, Wang L L, Mun E, Johnson D D, Mou D X, Huang L N, Lee Y B, Bud'ko S L, Canfield P C and Kaminski A 2016 Nat. Phys. 12 667
|
[14] |
Jo N H, Wu Y, Wang L L, Orth P P, Downing S S, Manni S, Mou D X, Johnson D D, Kaminski A, Bud'ko S L and Canfield P C 2017 Phys. Rev. B 96 165145
|
[15] |
Pan X C, Chen X L, Liu H M, Feng Y Q, Wei Z X, Zhou Y H, Chi Z H, Pi L, Yen F, Song F Q, Wan X G, Yang Z R, Wang B G, Wang G H and Zhang Y H 2015 Nat. Commun. 6 7805
|
[16] |
Zhou Y H, Lu P C, Du Y P, Zhu X D, Zhang G H, Zhang R R, Shao D X, Chen X L, Wang X F, Tian M L, Sun J, Wan X G, Yang Z R, Yang W G, Zhang Y H and Xing D Y 2016 Phys. Rev. Lett. 117 146402
|
[17] |
Kang D, Zhou Y, Yi W, Yang C, Guo J, Shi Y, Zhang S, Wang Z, Zhang C, Jiang S, Li A, Yang K, Wu Q, Zhang G, Sun L and Zhao Z 2015 Nat. Commun. 6 7804
|
[18] |
Xu C Q, Zhou W, Sankar R, Xing X Z, Shi Z X, Han Z D, Qian B, Wang J H, Zhu Z W, Zhang J L, Bangura A F, Hussey N E and Xu X F 2017 Phys. Rev. Mater. 1 064201
|
[19] |
Park C, Popov D, Ikuta D, Lin C L, Kenney-Benson C, Rod E, Bommannavar A and Shen G Y 2015 Rev. Sci. Instrum. 86 072205
|
[20] |
Prescher C and Prakapenka V B 2015 High Press. Res. 35 223
|
[21] |
Hunter B A 1998 Rietica–A Visual Rietveld Program, International Union of Crystallography Commission on Powder Diffraction Newsletter No. 20 (Summer 1998), http://www.rietica.org
|
[22] |
Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673
|
[23] |
Birch F 1947 Phys. Rev. 71 809
|
[24] |
Zhou Y, Gu C C, Chen X L, Zhou Y H, An C and Yang Z Y 2018 J. Solid State Chem. 265 359
|
[25] |
Zhang X, Xiao Z, Lei H, Toda Y, Matsuishi S, Kamiya T, Ueda S and Hosono H 2014 Chem. Mater. 26 6638
|
[26] |
Cai P L, Hu J, He L P, Pan J, Hong X C, Zhang Z, Zhang J, Wei J, Mao Z Q and Li S Y 2015 Phys. Rev. Lett. 115 057202
|
[27] |
Wang K F and Petrovic C 2012 Phys. Rev. B 86 155213
|
[28] |
Zhang J, Liu F L, Dong J K, Xu Y, Li N N, Yang W G and Li S Y 2015 Chin. Phys. Lett. 32 097102
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|