|
|
Structural and electronic properties of transition-metal chalcogenides Mo5S4 nanowires |
Ming-Shuai Qiu(邱明帅)1, Huai-Hong Guo(郭怀红)1, Ye Zhang(张也)1, Bao-Juan Dong(董宝娟)2, Sajjad Ali(阿里.萨贾德)2, Teng Yang(杨腾)2 |
1 College of Sciences, Liaoning Shihua University, Fushun 113001, China;
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
|
Abstract Transition-metal chalcogenide nanowires (TMCN) as a viable candidate for nanoscale applications have been attracting much attention for the last few decades. Starting from the rigid building block of M6 octahedra (M=transition metal), depending on the way of connection between M6 and decoration by chalcogenide atoms, multiple types of extended TMCN nanowires can be constructed based on some basic rules of backbone construction proposed here. Note that the well-known Chevrel-phase based M6X6 and M6X9 (X=chalcogenide atom) nanowires, which are among our proposed structures, have been successfully synthesized by experiment and well studied. More interestingly, based on the construction principles, we predict three new structural phases (the cap, edge, and C&E phases) of Mo5S4, one of which (the edge phase) has been obtained by top-down electron beam lithography on two-dimensional MoS2, and the C&E phase is yet to be synthesized but appears more stable than the edge phase. The stability of the new phases of Mo5S4 is further substantiated by crystal orbital overlapping population (COOP), phonon dispersion relation, and thermodynamic calculation. The barrier of the structural transition between different phases of Mo5S4 shows that it is very likely to realize an conversion from the experimentally achieved structure to the most stable C&E phase. The calculated electronic structure shows an interesting band nesting between valence and conduction bands of the C&E Mo5S4 phase, suggesting that such a nanowire structure can be well suitable for optoelectronic sensor applications.
|
Received: 09 August 2019
Revised: 23 August 2019
Accepted manuscript online:
|
PACS:
|
61.46.-w
|
(Structure of nanoscale materials)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51702146), the College Students' Innovation and Entrepreneurship Projects, China (Grant No. 201710148000072), and Liaoning Province Doctor Startup Fund, China (Grant No. 201601325). |
Corresponding Authors:
Huai-Hong Guo, Teng Yang
E-mail: hhguo@escience.cn;yangteng@imr.ac.cn
|
Cite this article:
Ming-Shuai Qiu(邱明帅), Huai-Hong Guo(郭怀红), Ye Zhang(张也), Bao-Juan Dong(董宝娟), Sajjad Ali(阿里.萨贾德), Teng Yang(杨腾) Structural and electronic properties of transition-metal chalcogenides Mo5S4 nanowires 2019 Chin. Phys. B 28 106103
|
[30] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[1] |
Saito R, Dresslhaus G and Dresselhaus M S 1999 Physical Properties of Carbon Nanotubes (London: Imperial College Press)
|
[31] |
Kresse G and Hafner J 1993 Phys. Rev. B 47 558
|
[2] |
Dekker C 1999 Phys. Today 52 22
|
[32] |
Perdew J P, Burke K and Ernzerhof M 2996 Phys. Rev. Lett. 77 3865
|
[3] |
Lieber C M 1998 Solid State Commun. 107 607
|
[33] |
Baroni S, de Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
|
[4] |
Hu J, Odom T W and Lieber C M 1999 Acc. Chem. Res. 32 435
|
[5] |
Venkataraman L and Lieber C M 1999 Phys. Rev. Lett. 83 5334
|
[34] |
Togo A and Tanaka I 2015 Scripta Materialia 108 1
|
[6] |
Dresselhaus M S, Dresslhaus G, and Avouris P 2001 Carbon Nanotubes: Synthesis, Structure, Properties and Applications (Berlin: Springer)
|
[35] |
Hughbanks T and Hoffmann R 1983 J. Am. Chem. Soc. 105 3528
|
[7] |
Yang T, Okano S, Berber S and Tománek D 2006 Phys. Rev. Lett. 96 125502
|
[36] |
Dronskowski R and Blöchl P E 1993 The Journal of Physical Chemistry 97 8617
|
[8] |
Popov I, Yang T, Berber S, Seifert G and Tománek D 2007 Phys. Rev. Lett. 99 085503
|
[37] |
Wang J Z, Yang T, Zhang Z D and Yang, L 2018 Appl. Phys. Lett. 112 213104
|
[9] |
Mihailovic D 2009 Progress in Materials Science 54 309
|
[38] |
Wang Y, Xiao J, Zhu H, Li Y, et al. 2017 Nature 550 487
|
[10] |
Gall P and Gougeon P 2008 Journal of Solid State Chemistry 8 1
|
[39] |
Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C K, Sun L D, Guo H H, Ye Y, Sun D M, Chen Y S, Yang T, Zhang J, Ono S, Han Z and Zhang Z D 2018 Nat. Nanotechnol. 13 554
|
[11] |
Gall P, Guizouarn T and Gougeon P 2015 Journal of Solid State Chemistry 227 98
|
[12] |
Roger Chevrel P, Sergent M and Prigent J 1971 J. Solid State Chem. 3 515
|
[13] |
Kibsgaard J, Tuxen A, Levisen M, Lgsgaard E, Gemming S, Seifert G, Lauritsen J V and Besenbacher F 2008 Nano Lett. 8 3928
|
[14] |
Lin J, Cretu O, Zhou W, Suenaga K, Prasai D, Bolotin K I, Cuong N T, Otani M, Okada S, Lupini A R, Idrobo J C, Caudel D, Burger A, Ghimire N J, Yan J, Mandrus D G, Pennycook S J and Pantelides S T 2014 Nat. Nanotechnol. 9 436
|
[15] |
Guo W and Liu X 2014 Nat. Nanotechnol. 9 413
|
[16] |
Nicolosi V, Vrbanic D, Mrzel A, McCauley J, O'Flaherty S, McGuinness C, Compagnini G, Mihailovic D, Blau W J and Coleman J N 2005 The Journal of Physical Chemistry B 109 7124
|
[17] |
Yang T, Berber S and Tománek D 2008 Phys. Rev. B 77 165426
|
[18] |
He M, Simon A and Duppel V. 2004 Z. Anorg. Allg. Chem. 630 535
|
[19] |
Kumar V and Heine V 1984 J. Phys. F: Met. Phys. 14 365
|
[20] |
Selte K and Kjekshus A 1963 Acta Chemica Scandinavica 17 2560
|
[21] |
Charki F 1997 J. Solid State Chemistry 131 310
|
[22] |
Liu X, Xu T, Wu X, Zhang Z, Yu J, Qiu H, Hong J H, Jin C H, Li J X, Wang X R, Sun L T and Guo W 2013 Nat. Commun. 4 1776
|
[23] |
Ataca C, Çahin H, Aktürk E and Ciraci S 2011 J. Phys. Chem. C 115 3934
|
[24] |
Yang S, Li D, Zhang T, Tao Z and Chen J 2012 J. Phys. Chem. C 116 1307
|
[25] |
Li Y, Zhou Z, Zhang S and Chen Z 2008 J. Am. Chem. Soc. 130 16739
|
[26] |
Pan H and Zhang Y 2012 J. Phys. Chem. C 116 11752
|
[27] |
Hicks L D and Dresselhaus M S 1993 Phys. Rev. B 47 16631
|
[28] |
Hung N T, Hasdeo E H, Nugraha A R T, Dresselhaus M S and Saito R 2016 Phys. Rev. Lett. 117 036602
|
[29] |
Dong B, Wang Z, Hung N T, Oganov A, Yang T, Saito R and Zhang Z 2019 Phys. Rev. Materials 3 013405
|
[30] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[31] |
Kresse G and Hafner J 1993 Phys. Rev. B 47 558
|
[32] |
Perdew J P, Burke K and Ernzerhof M 2996 Phys. Rev. Lett. 77 3865
|
[33] |
Baroni S, de Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
|
[34] |
Togo A and Tanaka I 2015 Scripta Materialia 108 1
|
[35] |
Hughbanks T and Hoffmann R 1983 J. Am. Chem. Soc. 105 3528
|
[36] |
Dronskowski R and Blöchl P E 1993 The Journal of Physical Chemistry 97 8617
|
[37] |
Wang J Z, Yang T, Zhang Z D and Yang, L 2018 Appl. Phys. Lett. 112 213104
|
[38] |
Wang Y, Xiao J, Zhu H, Li Y, et al. 2017 Nature 550 487
|
[39] |
Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C K, Sun L D, Guo H H, Ye Y, Sun D M, Chen Y S, Yang T, Zhang J, Ono S, Han Z and Zhang Z D 2018 Nat. Nanotechnol. 13 554
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|