Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 106103    DOI: 10.1088/1674-1056/ab3f9a
RAPID COMMUNICATION Prev   Next  

Structural and electronic properties of transition-metal chalcogenides Mo5S4 nanowires

Ming-Shuai Qiu(邱明帅)1, Huai-Hong Guo(郭怀红)1, Ye Zhang(张也)1, Bao-Juan Dong(董宝娟)2, Sajjad Ali(阿里.萨贾德)2, Teng Yang(杨腾)2
1 College of Sciences, Liaoning Shihua University, Fushun 113001, China;
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Abstract  

Transition-metal chalcogenide nanowires (TMCN) as a viable candidate for nanoscale applications have been attracting much attention for the last few decades. Starting from the rigid building block of M6 octahedra (M=transition metal), depending on the way of connection between M6 and decoration by chalcogenide atoms, multiple types of extended TMCN nanowires can be constructed based on some basic rules of backbone construction proposed here. Note that the well-known Chevrel-phase based M6X6 and M6X9 (X=chalcogenide atom) nanowires, which are among our proposed structures, have been successfully synthesized by experiment and well studied. More interestingly, based on the construction principles, we predict three new structural phases (the cap, edge, and C&E phases) of Mo5S4, one of which (the edge phase) has been obtained by top-down electron beam lithography on two-dimensional MoS2, and the C&E phase is yet to be synthesized but appears more stable than the edge phase. The stability of the new phases of Mo5S4 is further substantiated by crystal orbital overlapping population (COOP), phonon dispersion relation, and thermodynamic calculation. The barrier of the structural transition between different phases of Mo5S4 shows that it is very likely to realize an conversion from the experimentally achieved structure to the most stable C&E phase. The calculated electronic structure shows an interesting band nesting between valence and conduction bands of the C&E Mo5S4 phase, suggesting that such a nanowire structure can be well suitable for optoelectronic sensor applications.

Keywords:  transition-metal      chalcogenide      nanowire  
Received:  09 August 2019      Revised:  23 August 2019      Accepted manuscript online: 
PACS:  61.46.-w (Structure of nanoscale materials)  
  73.20.At (Surface states, band structure, electron density of states)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 51702146), the College Students' Innovation and Entrepreneurship Projects, China (Grant No. 201710148000072), and Liaoning Province Doctor Startup Fund, China (Grant No. 201601325).

Corresponding Authors:  Huai-Hong Guo, Teng Yang     E-mail:  hhguo@escience.cn;yangteng@imr.ac.cn

Cite this article: 

Ming-Shuai Qiu(邱明帅), Huai-Hong Guo(郭怀红), Ye Zhang(张也), Bao-Juan Dong(董宝娟), Sajjad Ali(阿里.萨贾德), Teng Yang(杨腾) Structural and electronic properties of transition-metal chalcogenides Mo5S4 nanowires 2019 Chin. Phys. B 28 106103

[30] Blöchl P E 1994 Phys. Rev. B 50 17953
[1] Saito R, Dresslhaus G and Dresselhaus M S 1999 Physical Properties of Carbon Nanotubes (London: Imperial College Press)
[31] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[2] Dekker C 1999 Phys. Today 52 22
[32] Perdew J P, Burke K and Ernzerhof M 2996 Phys. Rev. Lett. 77 3865
[3] Lieber C M 1998 Solid State Commun. 107 607
[33] Baroni S, de Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[4] Hu J, Odom T W and Lieber C M 1999 Acc. Chem. Res. 32 435
[5] Venkataraman L and Lieber C M 1999 Phys. Rev. Lett. 83 5334
[34] Togo A and Tanaka I 2015 Scripta Materialia 108 1
[6] Dresselhaus M S, Dresslhaus G, and Avouris P 2001 Carbon Nanotubes: Synthesis, Structure, Properties and Applications (Berlin: Springer)
[35] Hughbanks T and Hoffmann R 1983 J. Am. Chem. Soc. 105 3528
[7] Yang T, Okano S, Berber S and Tománek D 2006 Phys. Rev. Lett. 96 125502
[36] Dronskowski R and Blöchl P E 1993 The Journal of Physical Chemistry 97 8617
[8] Popov I, Yang T, Berber S, Seifert G and Tománek D 2007 Phys. Rev. Lett. 99 085503
[37] Wang J Z, Yang T, Zhang Z D and Yang, L 2018 Appl. Phys. Lett. 112 213104
[9] Mihailovic D 2009 Progress in Materials Science 54 309
[38] Wang Y, Xiao J, Zhu H, Li Y, et al. 2017 Nature 550 487
[10] Gall P and Gougeon P 2008 Journal of Solid State Chemistry 8 1
[39] Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C K, Sun L D, Guo H H, Ye Y, Sun D M, Chen Y S, Yang T, Zhang J, Ono S, Han Z and Zhang Z D 2018 Nat. Nanotechnol. 13 554
[11] Gall P, Guizouarn T and Gougeon P 2015 Journal of Solid State Chemistry 227 98
[12] Roger Chevrel P, Sergent M and Prigent J 1971 J. Solid State Chem. 3 515
[13] Kibsgaard J, Tuxen A, Levisen M, Lgsgaard E, Gemming S, Seifert G, Lauritsen J V and Besenbacher F 2008 Nano Lett. 8 3928
[14] Lin J, Cretu O, Zhou W, Suenaga K, Prasai D, Bolotin K I, Cuong N T, Otani M, Okada S, Lupini A R, Idrobo J C, Caudel D, Burger A, Ghimire N J, Yan J, Mandrus D G, Pennycook S J and Pantelides S T 2014 Nat. Nanotechnol. 9 436
[15] Guo W and Liu X 2014 Nat. Nanotechnol. 9 413
[16] Nicolosi V, Vrbanic D, Mrzel A, McCauley J, O'Flaherty S, McGuinness C, Compagnini G, Mihailovic D, Blau W J and Coleman J N 2005 The Journal of Physical Chemistry B 109 7124
[17] Yang T, Berber S and Tománek D 2008 Phys. Rev. B 77 165426
[18] He M, Simon A and Duppel V. 2004 Z. Anorg. Allg. Chem. 630 535
[19] Kumar V and Heine V 1984 J. Phys. F: Met. Phys. 14 365
[20] Selte K and Kjekshus A 1963 Acta Chemica Scandinavica 17 2560
[21] Charki F 1997 J. Solid State Chemistry 131 310
[22] Liu X, Xu T, Wu X, Zhang Z, Yu J, Qiu H, Hong J H, Jin C H, Li J X, Wang X R, Sun L T and Guo W 2013 Nat. Commun. 4 1776
[23] Ataca C, Çahin H, Aktürk E and Ciraci S 2011 J. Phys. Chem. C 115 3934
[24] Yang S, Li D, Zhang T, Tao Z and Chen J 2012 J. Phys. Chem. C 116 1307
[25] Li Y, Zhou Z, Zhang S and Chen Z 2008 J. Am. Chem. Soc. 130 16739
[26] Pan H and Zhang Y 2012 J. Phys. Chem. C 116 11752
[27] Hicks L D and Dresselhaus M S 1993 Phys. Rev. B 47 16631
[28] Hung N T, Hasdeo E H, Nugraha A R T, Dresselhaus M S and Saito R 2016 Phys. Rev. Lett. 117 036602
[29] Dong B, Wang Z, Hung N T, Oganov A, Yang T, Saito R and Zhang Z 2019 Phys. Rev. Materials 3 013405
[30] Blöchl P E 1994 Phys. Rev. B 50 17953
[31] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[32] Perdew J P, Burke K and Ernzerhof M 2996 Phys. Rev. Lett. 77 3865
[33] Baroni S, de Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[34] Togo A and Tanaka I 2015 Scripta Materialia 108 1
[35] Hughbanks T and Hoffmann R 1983 J. Am. Chem. Soc. 105 3528
[36] Dronskowski R and Blöchl P E 1993 The Journal of Physical Chemistry 97 8617
[37] Wang J Z, Yang T, Zhang Z D and Yang, L 2018 Appl. Phys. Lett. 112 213104
[38] Wang Y, Xiao J, Zhu H, Li Y, et al. 2017 Nature 550 487
[39] Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C K, Sun L D, Guo H H, Ye Y, Sun D M, Chen Y S, Yang T, Zhang J, Ono S, Han Z and Zhang Z D 2018 Nat. Nanotechnol. 13 554
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[3] Fabrication of honeycomb AuTe monolayer with Dirac nodal line fermions
Qin Wang(汪琴), Jie Zhang(张杰), Jierui Huang(黄杰瑞), Jinan Shi(时金安), Shuai Zhang(张帅), Hui Guo(郭辉), Li Huang(黄立), Hong Ding(丁洪), Wu Zhou(周武), Yan-Fang Zhang(张艳芳), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2023, 32(1): 016102.
[4] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[5] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[6] Charge density wave states in phase-engineered monolayer VTe2
Zhi-Li Zhu(朱知力), Zhong-Liu Liu(刘中流), Xu Wu(武旭), Xuan-Yi Li(李轩熠), Jin-An Shi(时金安), Chen Liu(刘晨), Guo-Jian Qian(钱国健), Qi Zheng(郑琦), Li Huang(黄立), Xiao Lin(林晓), Jia-Ou Wang(王嘉欧), Hui Chen(陈辉), Wu Zhou(周武), Jia-Tao Sun(孙家涛), Ye-Liang Wang(王业亮), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(7): 077101.
[7] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[8] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[9] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[10] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[11] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[12] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[13] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[14] Mode characteristics of nested eccentric waveguides constructed by two cylindrical nanowires coated with graphene
Ji Liu(刘吉), Lixia Yu(于丽霞), and Wenrui Xue(薛文瑞). Chin. Phys. B, 2022, 31(3): 036803.
[15] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
No Suggested Reading articles found!