Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 107103    DOI: 10.1088/1674-1056/ab3dfe
SPECIAL TOPIC—110th Anniversary of Lanzhou University Prev   Next  

Benchmarking the simplest slave-particle theory with Hubbard dimer

Wei-Wei Yang(杨薇薇)1, Hong-Gang Luo(罗洪刚)1,2, Yin Zhong(钟寅)1
1 Center for Interdisciplinary Studies and Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou 730000, China;
2 Beijing Computational Science Research Center, Beijing 100084, China
Abstract  Slave-particle method is a powerful tool to tackle the correlation effect in quantum many-body physics. Although it has been successfully used to comprehend various intriguing problems, such as Mott metal-insulator transition and Kondo effect, there is still no convincing theory so far on the availability and limitation of this method. The abuse of slave-particle method may lead to wrong physics. As the simplest slave-particle method, Z2 slave spin, which is widely applied to many strongly correlated problems, is highly accessible and researchable. In this work, we will uncover the nature of the Z2 slave-spin method by studying a two-site Hubbard model. After exploring aspects of properties of this toy model, we make a comparative analysis of the results obtained by three methods:(i) slave-spin method on mean-field level, (ii) slave-spin method with gauge constraint, and (iii) the exact solution as a benchmark. We find that, protected by the particle-hole symmetry, the slave-spin mean-field method can recover the static properties of ground state exactly at half filling. Furthermore, in the parameter space where both U and T are small enough, the slave-spin mean-field method is also reliable in calculating the dynamic and thermal dynamic properties. However, when U or T is considerably large, the mean-field approximation gives ill-defined behaviors, which result from the unphysical states in the enlarged Hilbert space. These findings lead to our conclusion that the accuracy of slave particle can be guaranteed if we can exclude all unphysical states by enforcing gauge constraints. Our work demonstrates the promising prospect of slave-particle method in studying complex strongly correlated models with specific symmetry or in certain parameter space.
Keywords:  slave particle theory      Hubbard dimer      strongly correlated physics  
Received:  26 July 2019      Revised:  21 August 2019      Accepted manuscript online: 
PACS:  71.10.-w (Theories and models of many-electron systems)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674139, 11704166, and 11834005), the Fundamental Research Funds for the Central Universities, China, and Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT-16R35).
Corresponding Authors:  Yin Zhong     E-mail:  zhongy@lzu.edu.cn

Cite this article: 

Wei-Wei Yang(杨薇薇), Hong-Gang Luo(罗洪刚), Yin Zhong(钟寅) Benchmarking the simplest slave-particle theory with Hubbard dimer 2019 Chin. Phys. B 28 107103

[30] Hohenadler M and Assaad F F 2018 Phys. Rev. Lett 121 086601
[1] Mott N F 1949 Proc. R. Soc. London, Ser. A 62 416
[31] Carrascal D J, Ferrer J, Smith J C and Burke K 2015 J. Phys.: Condens. Matter 27 393001
[2] Sun J, Liu Y and Song Y 2007 Rev. Mod. Phys 79 1015
[32] Fuks J I, Farzanehpour M, Tokatly I V, Appel H, Kurth S and Rubio A 2013 Phys. Rev. A 88 062512
[3] Löhneysen H v, Rosch A, Vojta M and Wölfle P 2007 Rev. Mod. Phys 79 1015
[33] Ha Z N C 1996 Quantum Many-Body Systems in One Dimension (Singapore: World Scientific).
[4] Sigrist M and Ueda K 1991 Rev. Mod. Phys 63 239
[34] Essler F H L, Frahm H, Göhmann F, Klümper A and Korepin V E 2010 The One-Dimensional Hubbard Model (Singapore: Cambridge University Press)
[35] Mattis D C 1993 The many-body problem: an encyclopedia of exactly solved models in one dimension (Singapore: World Scientific)
[36] Takahashi M 2005 Thermodynamics of one-dimensional solvable models (Cambridge: Cambridge University Press)
[5] Hao N and Hu J P 2008 Rev. Mod. Phys 80 885
[37] Fradkin E and Shenker S H 1979 Phys. Rev. D 19 3682
[6] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys 80 885
[38] Kogut J B 1979 Rev. Mod. Phys 51 659
[7] Barnes S E 1976 J. Phys. F 6 1375
[8] Kotliar G and Ruckenstein A E 1986 Phys. Rev. Lett 57 1362
[39] Ferraz A and Kochetov E 2013 Phys. Rev. B 87 037101
[9] Coleman P 1984 Phys. Rev. B 29 3035
[40] Rüegg A, Huber S D and Sigrist M 2013 Phys. Rev. B 87 037102
[10] Florens S and Georges A 2004 Phys. Rev. B 70 035114
[41] Žitko R and Fabrizio M 2015 Phys. Rev. B 91 245130
[11] Florens S and Georges A 2002 Phys. Rev. B 66 165111
[42] Georges A, Kotliar G, Krauth W and Rozenberg M J 1996 Rev. Mod. Phys 68 13
[12] Florens S, San José P, Guinea F and Georges A 2003 Phys. Rev. B 68 245311
[13] de'Medici L, Georges A and Biermann S 2005 Phys. Rev. B 72 205124
[14] Rüegg A, Huber S D and Sigrist M 2010 Phys. Rev. B 81 155118
[15] Huber S D and Rüegg A 2011 Phys. Rev. B 84 235115
[16] Yu R and Si Q M 2011 Phys. Rev. B 84 235115
[17] Schiró M and Fabrizio M 2011 Phys. Rev. B 83 165105
[18] Hassan S R and de'Medici L 2010 Phys. Rev. B 81 035106
[19] Yu R and Si Q M 2012 Phys. Rev. B 86 085104
[20] Lee W C and Lee T K 2017 Phys. Rev. B 96 115114
[21] Georgescu A B and Ismail-Beigi S 2015 Phys. Rev. B 92 235117
[22] Nayak C 2000 Phys. Rev. Lett 85 178
[23] Baruselli P P and Fabrizio M 2012 Phys. Rev. B 85 073106
[24] Rüegg A and Fiete G A 2012 Phys. Rev. Lett 108 046401
[25] Levin M and Stern A 2009 Phys. Rev. Lett 103 196803
[26] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys 78 17
[27] Nandkishore R, Metlitski M A and Senthil T 2012 Phys. Rev. B 86 045128
[28] Zhong Y, Liu K, Wang Y Q and Luo H G 2012 Phys. Rev. B 86 115113
[29] Zhong Y, Wang Y F and Luo H G 2013 Phys. Rev. B 88 045109
[30] Hohenadler M and Assaad F F 2018 Phys. Rev. Lett 121 086601
[31] Carrascal D J, Ferrer J, Smith J C and Burke K 2015 J. Phys.: Condens. Matter 27 393001
[32] Fuks J I, Farzanehpour M, Tokatly I V, Appel H, Kurth S and Rubio A 2013 Phys. Rev. A 88 062512
[33] Ha Z N C 1996 Quantum Many-Body Systems in One Dimension (Singapore: World Scientific).
[34] Essler F H L, Frahm H, Göhmann F, Klümper A and Korepin V E 2010 The One-Dimensional Hubbard Model (Singapore: Cambridge University Press)
[35] Mattis D C 1993 The many-body problem: an encyclopedia of exactly solved models in one dimension (Singapore: World Scientific)
[36] Takahashi M 2005 Thermodynamics of one-dimensional solvable models (Cambridge: Cambridge University Press)
[37] Fradkin E and Shenker S H 1979 Phys. Rev. D 19 3682
[38] Kogut J B 1979 Rev. Mod. Phys 51 659
[39] Ferraz A and Kochetov E 2013 Phys. Rev. B 87 037101
[40] Rüegg A, Huber S D and Sigrist M 2013 Phys. Rev. B 87 037102
[41] Žitko R and Fabrizio M 2015 Phys. Rev. B 91 245130
[42] Georges A, Kotliar G, Krauth W and Rozenberg M J 1996 Rev. Mod. Phys 68 13
[1] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[2] Resistivity minimum emerges in Anderson impurity model modified with Sachdev-Ye-Kitaev interaction
Lan Zhang(张欄), Yin Zhong(钟寅), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(4): 047106.
[3] Density wave and topological superconductivity in the magic-angle-twisted bilayer-graphene
Ming Zhang(张铭), Yu Zhang(张渝), Chen Lu(卢晨), Wei-Qiang Chen(陈伟强), and Fan Yang(杨帆). Chin. Phys. B, 2020, 29(12): 127102.
[4] Hubbard model on an anisotropic checkerboard lattice at finite temperatures: Magnetic and metal-insulator transitions
Hai-Di Liu(刘海迪). Chin. Phys. B, 2019, 28(10): 107102.
[5] Electronic structure from equivalent differential equations of Hartree-Fock equations
Hai Lin(林海). Chin. Phys. B, 2019, 28(8): 087101.
[6] Phase diagram, correlations, and quantum critical point in the periodic Anderson model
Jian-Wei Yang(杨建伟), Qiao-Ni Chen(陈巧妮). Chin. Phys. B, 2018, 27(3): 037101.
[7] Novel high-K with low specific on-resistance high voltage lateral double-diffused MOSFET
Li-Juan Wu(吴丽娟), Zhong-Jie Zhang(章中杰), Yue Song(宋月), Hang Yang(杨航), Li-Min Hu(胡利民), Na Yuan(袁娜). Chin. Phys. B, 2017, 26(2): 027101.
[8] Impurity effects on electrical conductivity of doped bilayer graphene in the presence of a bias voltage
E Lotfi, H Rezania, B Arghavaninia, M Yarmohammadi. Chin. Phys. B, 2016, 25(7): 076102.
[9] Antiferromagnetism and Kondo screening on a honeycomb lattice
Lin Heng-Fu (林恒福), Tao Hong-Shuai (陶红帅), Guo Wen-Xiang (郭文祥), Liu Wu-Ming (刘伍明). Chin. Phys. B, 2015, 24(5): 057101.
[10] Tight-binding electron-phonon coupling and band renormalization in graphene
Zhang De-Sheng (张德生), Kang Guang-Zhen (康广震), Li Jun (李俊). Chin. Phys. B, 2015, 24(1): 017301.
[11] Interaction and spin-orbit effects on a kagome lattice at 1/3 filling
Liu Hai-Di (刘海迪), Chen Yao-Hua (陈耀桦), Lin Heng-Fu (林恒福), Tao Hong-Shuai (陶红帅), Wu Jian-Hua (武建华). Chin. Phys. B, 2014, 23(7): 077101.
[12] Partial-SOI high voltage laterally double-diffused MOS with a partially buried n+-layer
Hu Sheng-Dong (胡盛东), Wu Xing-He (武星河), Zhu Zhi (朱志), Jin Jing-Jing (金晶晶), Chen Yin-Hui (陈银晖). Chin. Phys. B, 2014, 23(6): 067101.
[13] Disappearance of the Dirac cone in silicene due to the presence of an electric field
D. A. Rowlands, Zhang Yu-Zhong (张宇钟). Chin. Phys. B, 2014, 23(3): 037101.
[14] Novel high-voltage power lateral MOSFET with adaptive buried electrodes
Zhang Wen-Tong(章文通), Wu Li-Juan(吴丽娟), Qiao Ming(乔明) Luo Xiao-Rong(罗小蓉), Zhang Bo(张波), and Li Zhao-Ji(李肇基) . Chin. Phys. B, 2012, 21(7): 077101.
[15] Improvement on the breakdown voltage for silicon-on-insulator devices based on epitaxy-separation by implantation oxygen by a partial buried n+-layer
Hu Sheng-Dong(胡盛东), Wu Li-Juan(吴丽娟), Zhou Jian-Lin(周建林), Gan Ping(甘平), Zhang Bo(张波), and Li Zhao-Ji(李肇基) . Chin. Phys. B, 2012, 21(2): 027101.
No Suggested Reading articles found!