Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 107104    DOI: 10.1088/1674-1056/ab4253
Special Issue: TOPICAL REVIEW — CALYPSO structure prediction methodology and its applications to materials discovery
TOPICAL REVIEW—CALYPSO structure prediction methodology and its applications to materials discovery Prev   Next  

The role of CALYPSO in the discovery of high-Tc hydrogen-rich superconductors

Wenwen Cui(崔文文), Yinwei Li(李印威)
Laboratory of Quantum Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
Abstract  Hydrogen-rich compounds are promising candidates for high-Tc or even room-temperature superconductors. The search for high-Tc hydrides poses a major experimental challenge because there are many known hydrides and even more unknown hydrides with unusual stoichiometries under high pressure. The combination of crystal structure prediction and first-principles calculations has played an important role in the search for high-Tc hydrides, especially in guiding experimental synthesis. Crystal structure AnaLYsis by Particle Swarm Optimization (CALYPSO) is one of the most efficient methods for predicting stable or metastable structures from the chemical composition alone. This review summarizes the superconducting hydrides predicted using CALYPSO. We focus on two breakthroughs toward room-temperature superconductors initiated by CALYPSO:the prediction of high-Tc superconductivity in compressed hydrogen sulfide and lanthanum hydrides, both of which have been confirmed experimentally and have set new record Tc values. We also address the challenges and outlook in this field.
Keywords:  CALYPSO      structure prediction      hydrogen-rich superconductors  
Received:  20 June 2019      Revised:  05 September 2019      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  74.25.Dw (Superconductivity phase diagrams)  
  74.70.-b (Superconducting materials other than cuprates)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804128 and 11722433), the Qing Lan Project of Jiangsu Province, China, and the Six Talent Peaks Project of Jiangsu Province, China.
Corresponding Authors:  Yinwei Li     E-mail:  yinwei_li@jsnu.edu.cn

Cite this article: 

Wenwen Cui(崔文文), Yinwei Li(李印威) The role of CALYPSO in the discovery of high-Tc hydrogen-rich superconductors 2019 Chin. Phys. B 28 107104

[31] Li X, Liu H and Peng F 2016 Phys. Chem. Chem. Phys. 18 28791
[1] Van D and Kes P 2010 Phys. Today 63 38
[32] Zheng S, Zhang S, Sun Y, Zhang J, Lin J, Yang G and Bergara A 2018 Front. Phys. 6 101
[2] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 106 1175
[33] Gao G, Wang H, Bergara A, Li Y, Liu G and Ma Y 2011 Phys. Rev. B 84 064118
[3] McMillan W L 1968 Phys. Rev. 167 331
[34] Cui W, Shi J, Liu H, Yao Y, Wang H, Iitaka T and Ma Y 2015 Sci. Rep. 5 13039
[4] Ashcroft N 1968 Phys. Rev. Lett. 21 1748
[35] Cheng Y, Zhang C, Wang T, Zhong G, Yang C and Chen X 2015 Sci. Rep. 5 16475
[5] Ashcroft N 2004 Phys. Rev. Lett. 92 187002
[36] Liu H, Li Y, Gao G, Tse J S and Naumov I I 2016 J. Phys. Chem. C 120 3458
[37] Yuan Y, Li Y, Fang G, Liu G, Pei C, Li X, Zheng H, Yang K and Wang L 2019 Natl. Sci. Rev. 6 524
[6] Dias R P and Silvera I F 2017 Science 355 715
[38] Fu Y, Du X, Zhang L, Peng F, Zhang M, Pickard C J, Needs R J, Singh D J, Zheng W and Ma Y 2016 Chem. Mater. 28 1746
[7] Goncharov A F and Struzhkin V V 2017 Science 357 eaam9736
[39] Li Y, Hao J, Liu H, Li Y and Ma Y 2014 J. Chem. Phys. 140 174712
[8] Liu X D, Dalladay-Simpson P, Howie R T, Li B and Gregoryanz E 2017 Science 357 eaan2286
[40] Li Y, Wang L, Liu H, Zhang Y, Hao J, Pickard C J, Nelson J R, Needs R J, Li W, Huang Y, Errea I, Calandra M, Mauri F and Ma Y 2016 Phys. Rev. B 93 020103
[41] Zhang S, Wang Y, Zhang J, Liu H, Zhong X, Song H F, Yang G, Zhang L and Ma Y 2015 Sci. Rep. 5 15433
[9] Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116
[42] Zhong X, Wang H, Zhang J, Liu H, Zhang S, Song H F, Yang G, Zhang L and Ma Y 2016 Phys. Rev. Lett. 116 057002
[10] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063
[43] Lu S, Wu M, Liu H, Tse J S and Yang B 2015 RSC Adv. 5 45812
[11] Gao B, Gao P, Lu S, Lv J, Wang Y and Ma Y 2019 Sci. Bull. 64 301
[12] Shi J, Cui W, Botti S and Marques M A L 2018 Phys. Rev. Mater. 2 023604
[44] Chen C, Xu Y, Sun X and Wang S 2015 J. Phys. Chem. C 119 17039
[13] Li Y, Feng X, Liu H, Hao J, Redfern S A T, Lei W, Liu D and Ma Y 2018 Nat. Commun. 9 722
[45] Xiaozhen Y, Yangmei C, Xiaoyu K and Shikai X 2015 J. Chem. Phys. 143 218
[14] Li Y, Hao J, Liu H, Lu S and Tse J S 2015 Phys. Rev. Lett. 115 105502
[46] Collins M J, Ratcliffe C I and Ripmeester J A 1989 J. Phys. Chem. 93 7495
[15] Zhao Z, Zhang S, Yu T, Xu H, Bergara A and Yang G 2019 Phys. Rev. Lett. 122 97002
[47] Cockcroft J K and Fitch A N 1990 Z. Krist. 193 1
[16] Li Y, Wang Y, Pickard C J, Needs R J, Wang Y and Ma Y 2015 Phys. Rev. Lett. 114 125501
[48] Endo S, Ichimiya N, Koto K, Sasaki S and Shimizu H 1994 Phys. Rev. B 50 5865
[17] Wang X, Li Y, Pang Y X, Sun Y, Zhao X G, Wang J R and Zhang L 2018 Sci. Chin. Phys. Mech. Astron. 61 107311
[49] Shimizu H, Nakamichi Y and Sasaki S 1991 J. Chem. Phys. 95 2036
[18] Sun Y, Wang X, Zhao X G, Shi Z and Zhang L 2018 J. Semicond. 39 72001
[50] Sakashita M, Yamawaki H, Fujihisa H, Aoki K, Sasaki S and Shimizu H 1997 Phys. Rev. Lett. 79 1082
[19] Zhang L, Wang Y, Lv J and Ma Y 2017 Nat. Rev. Mater. 2 17005
[51] Rousseau R, Boero M, Bernasconi M, Parrinello M and Terakura K 2000 Phys. Rev. Lett. 85 1254
[20] Wang Y, Lv J, Li Q, Wang H and Ma Y 2018 Handbook Mater. Model.: Appl.: Curr. Emerging Mater. 1-28
[52] Errea I, Calandra M, Pickard C J, Nelson J, Needs R J, Li Y, Liu H, Zhang Y, Ma Y and Mauri F 2015 Phys. Rev. Lett. 114 157004
[21] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V and Shylin S I 2015 Nature 525 73
[53] Errea I, Calandra M, Pickard C J, Nelson J R, Needs R J, Li Y, Liu H, Zhang Y, Ma Y and Mauri F 2016 Nature 532 81
[22] Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V and Hemley R J 2019 Phys. Rev. Lett. 122 27001
[54] Akashi R, Kawamura M, Tsuneyuki S, Nomura Y and Arita R 2015 Phys. Rev. B. 91 224513
[23] Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M and Eremets M I 2019 Nature 569 528
[55] Sano W, Koretsune T, Tadano T, Akashi R and Arita R 2016 Phys. Rev. B 93 094525
[24] Wang H, Tse J S, Tanaka K, Iitaka T and Ma Y 2012 Proc. Natl. Acad. Sci. U. S. A. 109 6463
[56] Ishikawa T, Nakanishi A, Shimizu K, Katayama-Yoshida H, Oda T and Suzuki N 2016 Sci. Rep. 6 23160
[25] Feng X, Zhang J, Gao G, Liu H and Wang H 2015 RSC Adv. 5 59292
[57] Goncharov A F, Lobanov S S, Kruglov I, Zhao X M, Chen X J, Oganov A R, Konôpková Z and Prakapenka V B 2016 Phys. Rev. B 93 174105
[26] Li Y, Hao J, Liu H, Tse J S, Wang Y and Ma Y 2015 Sci. Rep. 5 09948
[58] Kruglov I, Akashi R, Yoshikawa S, Oganov A R and Esfahani M M D 2017 Phys. Rev. B 96 220101
[27] Liu H, Naumov I I, Hoffmann R, Ashcroft N W and Hemley R J 2017 Proc. Natl. Acad. Sci. U. S. A. 114 6990
[59] Komelj M and Krakauer H 2015 Phys. Rev. B 92 205125
[28] Peng F, Sun Y, Pickard C J, Needs R J, Wu Q and Ma Y 2017 Phys. Rev. Lett. 119 107001
[60] Quan Y and Pickett W E 2016 Phys. Rev. B 93 104526
[61] Ge Y, Zhang F and Yao Y 2016 Phys. Rev. B 93 224513
[29] Gao G, Hoffmann R, Ashcroft N W, Liu H, Bergara A and Ma Y 2013 Phys. Rev. B 88 184104
[62] Liu B, Cui W, Shi J, Zhu L, Chen J, Lin S, Su R, Ma J and Yang K 2018 Phys. Rev. B 98 174101
[30] Li X and Peng F 2017 Inorg. Chem. 56 13759
[63] Heil C and Boeri L 2015 Phys. Rev. B 92 060508
[31] Li X, Liu H and Peng F 2016 Phys. Chem. Chem. Phys. 18 28791
[64] Geballe Z M, Liu H, Mishra A K, Ahart M, Somayazulu M, Meng Y, Baldini M and Hemley R J 2018 Angew. Chem. Int. Ed. 57 688
[32] Zheng S, Zhang S, Sun Y, Zhang J, Lin J, Yang G and Bergara A 2018 Front. Phys. 6 101
[33] Gao G, Wang H, Bergara A, Li Y, Liu G and Ma Y 2011 Phys. Rev. B 84 064118
[65] Drozdov A P, Minkov V S, Besedin S P, Kong P P, Kuzovnikov M A and Knyazev D A 2018 arXiv: 1808.07039
[34] Cui W, Shi J, Liu H, Yao Y, Wang H, Iitaka T and Ma Y 2015 Sci. Rep. 5 13039
[66] Sun Y, Lv J, Xie Y, Liu H and Ma Y 2019 Phys. Rev. Lett. 123 97001
[35] Cheng Y, Zhang C, Wang T, Zhong G, Yang C and Chen X 2015 Sci. Rep. 5 16475
[67] Liang X, Bergara A, Wang L, Wen B, Zhao Z, Zhou X and He J 2019 Phys. Rev. B 99 100505
[36] Liu H, Li Y, Gao G, Tse J S and Naumov I I 2016 J. Phys. Chem. C 120 3458
[68] Flores-livas A, Amsler M, Heil C, Sanna A, Boeri L, Profeta G, Wolverton C, Goedecker S and Gross E K U 2016 Phys. Rev. B 93 020508
[37] Yuan Y, Li Y, Fang G, Liu G, Pei C, Li X, Zheng H, Yang K and Wang L 2019 Natl. Sci. Rev. 6 524
[69] Flores-Livas J A, Sanna A and Gross E K U 2016 Eur. Phys. J. B 89 63
[38] Fu Y, Du X, Zhang L, Peng F, Zhang M, Pickard C J, Needs R J, Singh D J, Zheng W and Ma Y 2016 Chem. Mater. 28 1746
[39] Li Y, Hao J, Liu H, Li Y and Ma Y 2014 J. Chem. Phys. 140 174712
[70] Drozdov A P, Eremets M I and Troyan I 2015 arXiv: 1508.06224
[40] Li Y, Wang L, Liu H, Zhang Y, Hao J, Pickard C J, Nelson J R, Needs R J, Li W, Huang Y, Errea I, Calandra M, Mauri F and Ma Y 2016 Phys. Rev. B 93 020103
[71] Wang Z, Yao Y, Zhu L, Liu H, Iitaka T, Wang H and Ma Y 2014 J. Chem. Phys. 140 124707
[41] Zhang S, Wang Y, Zhang J, Liu H, Zhong X, Song H F, Yang G, Zhang L and Ma Y 2015 Sci. Rep. 5 15433
[72] Li X F, Hu Z Y and Huang B 2017 Phys. Chem. Chem. Phys. 19 3538
[42] Zhong X, Wang H, Zhang J, Liu H, Zhang S, Song H F, Yang G, Zhang L and Ma Y 2016 Phys. Rev. Lett. 116 057002
[73] Qian S, Sheng X, Yan X, Chen Y and Bo S 2017 Phys. Rev. B 96 94513
[43] Lu S, Wu M, Liu H, Tse J S and Yang B 2015 RSC Adv. 5 45812
[74] Anon 2018 Front. Phys. 13 137107
[44] Chen C, Xu Y, Sun X and Wang S 2015 J. Phys. Chem. C 119 17039
[75] Ma Y, Duan D, Shao Z, Yu H, Liu H, Tian F, Huang X, Li D, Liu B and Cui T 2017 Phys. Rev. B 96 144518
[45] Xiaozhen Y, Yangmei C, Xiaoyu K and Shikai X 2015 J. Chem. Phys. 143 218
[46] Collins M J, Ratcliffe C I and Ripmeester J A 1989 J. Phys. Chem. 93 7495
[47] Cockcroft J K and Fitch A N 1990 Z. Krist. 193 1
[48] Endo S, Ichimiya N, Koto K, Sasaki S and Shimizu H 1994 Phys. Rev. B 50 5865
[49] Shimizu H, Nakamichi Y and Sasaki S 1991 J. Chem. Phys. 95 2036
[50] Sakashita M, Yamawaki H, Fujihisa H, Aoki K, Sasaki S and Shimizu H 1997 Phys. Rev. Lett. 79 1082
[51] Rousseau R, Boero M, Bernasconi M, Parrinello M and Terakura K 2000 Phys. Rev. Lett. 85 1254
[52] Errea I, Calandra M, Pickard C J, Nelson J, Needs R J, Li Y, Liu H, Zhang Y, Ma Y and Mauri F 2015 Phys. Rev. Lett. 114 157004
[53] Errea I, Calandra M, Pickard C J, Nelson J R, Needs R J, Li Y, Liu H, Zhang Y, Ma Y and Mauri F 2016 Nature 532 81
[54] Akashi R, Kawamura M, Tsuneyuki S, Nomura Y and Arita R 2015 Phys. Rev. B. 91 224513
[55] Sano W, Koretsune T, Tadano T, Akashi R and Arita R 2016 Phys. Rev. B 93 094525
[56] Ishikawa T, Nakanishi A, Shimizu K, Katayama-Yoshida H, Oda T and Suzuki N 2016 Sci. Rep. 6 23160
[57] Goncharov A F, Lobanov S S, Kruglov I, Zhao X M, Chen X J, Oganov A R, Konôpková Z and Prakapenka V B 2016 Phys. Rev. B 93 174105
[58] Kruglov I, Akashi R, Yoshikawa S, Oganov A R and Esfahani M M D 2017 Phys. Rev. B 96 220101
[59] Komelj M and Krakauer H 2015 Phys. Rev. B 92 205125
[60] Quan Y and Pickett W E 2016 Phys. Rev. B 93 104526
[61] Ge Y, Zhang F and Yao Y 2016 Phys. Rev. B 93 224513
[62] Liu B, Cui W, Shi J, Zhu L, Chen J, Lin S, Su R, Ma J and Yang K 2018 Phys. Rev. B 98 174101
[63] Heil C and Boeri L 2015 Phys. Rev. B 92 060508
[64] Geballe Z M, Liu H, Mishra A K, Ahart M, Somayazulu M, Meng Y, Baldini M and Hemley R J 2018 Angew. Chem. Int. Ed. 57 688
[65] Drozdov A P, Minkov V S, Besedin S P, Kong P P, Kuzovnikov M A and Knyazev D A 2018 arXiv: 1808.07039
[66] Sun Y, Lv J, Xie Y, Liu H and Ma Y 2019 Phys. Rev. Lett. 123 97001
[67] Liang X, Bergara A, Wang L, Wen B, Zhao Z, Zhou X and He J 2019 Phys. Rev. B 99 100505
[68] Flores-livas A, Amsler M, Heil C, Sanna A, Boeri L, Profeta G, Wolverton C, Goedecker S and Gross E K U 2016 Phys. Rev. B 93 020508
[69] Flores-Livas J A, Sanna A and Gross E K U 2016 Eur. Phys. J. B 89 63
[70] Drozdov A P, Eremets M I and Troyan I 2015 arXiv: 1508.06224
[71] Wang Z, Yao Y, Zhu L, Liu H, Iitaka T, Wang H and Ma Y 2014 J. Chem. Phys. 140 124707
[72] Li X F, Hu Z Y and Huang B 2017 Phys. Chem. Chem. Phys. 19 3538
[73] Qian S, Sheng X, Yan X, Chen Y and Bo S 2017 Phys. Rev. B 96 94513
[74] Anon 2018 Front. Phys. 13 137107
[75] Ma Y, Duan D, Shao Z, Yu H, Liu H, Tian F, Huang X, Li D, Liu B and Cui T 2017 Phys. Rev. B 96 144518
[1] RNAGCN: RNA tertiary structure assessment with a graph convolutional network
Chengwei Deng(邓成伟), Yunxin Tang(唐蕴芯), Jian Zhang(张建), Wenfei Li(李文飞), Jun Wang(王骏), and Wei Wang(王炜). Chin. Phys. B, 2022, 31(11): 118702.
[2] Pressure-induced phase transition in transition metal trifluorides
Peng Liu(刘鹏), Meiling Xu(徐美玲), Jian Lv(吕健), Pengyue Gao(高朋越), Chengxi Huang(黄呈熙), Yinwei Li(李印威), Jianyun Wang(王建云), Yanchao Wang(王彦超), and Mi Zhou(周密). Chin. Phys. B, 2022, 31(10): 106104.
[3] Probing structural and electronic properties of divalent metal Mgn+1 and SrMgn (n = 2–12) clusters and their anions
Song-Guo Xi(奚松国), Qing-Yang Li(李青阳), Yan-Fei Hu(胡燕飞), Yu-Quan Yuan(袁玉全), Ya-Ru Zhao(赵亚儒), Jun-Jie Yuan(袁俊杰), Meng-Chun Li(李孟春), and Yu-Jie Yang(杨雨杰). Chin. Phys. B, 2022, 31(1): 016106.
[4] Improving RNA secondary structure prediction using direct coupling analysis
Xiaoling He(何小玲), Jun Wang(王军), Jian Wang(王剑), Yi Xiao(肖奕). Chin. Phys. B, 2020, 29(7): 078702.
[5] Computational prediction of RNA tertiary structures using machine learning methods
Bin Huang(黄斌), Yuanyang Du(杜渊洋), Shuai Zhang(张帅), Wenfei Li(李文飞), Jun Wang (王骏), and Jian Zhang(张建)†. Chin. Phys. B, 2020, 29(10): 108704.
[6] Cluster structure prediction via CALYPSO method
Yonghong Tian(田永红), Weiguo Sun(孙伟国), Bole Chen(陈伯乐), Yuanyuan Jin(金圆圆), Cheng Lu(卢成). Chin. Phys. B, 2019, 28(10): 103104.
[7] Discovery of superhard materials via CALYPSO methodology
Shuangshuang Zhang(张爽爽), Julong He(何巨龙), Zhisheng Zhao(赵智胜), Dongli Yu(于栋利), Yongjun Tian(田永君). Chin. Phys. B, 2019, 28(10): 106104.
[8] The CALYPSO methodology for structure prediction
Qunchao Tong(童群超), Jian Lv(吕健), Pengyue Gao(高朋越), Yanchao Wang(王彦超). Chin. Phys. B, 2019, 28(10): 106105.
[9] Geoscience material structures prediction via CALYPSO methodology
Andreas Hermann. Chin. Phys. B, 2019, 28(10): 106107.
[10] High-pressure electrides: From design to synthesis
Biao Wan(万彪), Jingwu Zhang(张静武), Lailei Wu(吴来磊), Huiyang Gou(缑慧阳). Chin. Phys. B, 2019, 28(10): 106201.
[11] Recent progress on the prediction of two-dimensional materials using CALYPSO
Cheng Tang(唐程), Gurpreet Kour, Aijun Du(杜爱军). Chin. Phys. B, 2019, 28(10): 107306.
[12] Predicted novel insulating electride compound between alkali metals lithium and sodium under high pressure
Yang-Mei Chen(陈杨梅), Hua-Yun Geng(耿华运), Xiao-Zhen Yan(颜小珍), Zi-Wei Wang(王紫薇), Xiang-Rong Chen(陈向荣), Qiang Wu(吴强). Chin. Phys. B, 2017, 26(5): 056102.
[13] New crystal structure and physical properties of TcB from first-principles calculations
Zhang Gang-Tai (张刚台), Bai Ting-Ting (白婷婷), Yan Hai-Yan (闫海燕), Zhao Ya-Ru (赵亚儒). Chin. Phys. B, 2015, 24(10): 106104.
[14] RNA structure prediction:Progress and perspective
Shi Ya-Zhou (时亚洲), Wu Yuan-Yan (吴园燕), Wang Feng-Hua (王凤华), Tan Zhi-Jie (谭志杰). Chin. Phys. B, 2014, 23(7): 078701.
[15] High-pressure-activated carbon tetrachloride decomposition
Chen Yuan-Zheng (陈元正), Zhou Mi (周密), Sun Mei-Jiao (孙美娇), Li Zuo-Wei (里佐威), Sun Cheng-Lin (孙成林). Chin. Phys. B, 2014, 23(2): 023302.
No Suggested Reading articles found!