CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Hubbard model on an anisotropic checkerboard lattice at finite temperatures: Magnetic and metal-insulator transitions |
Hai-Di Liu(刘海迪) |
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China |
|
|
Abstract We study magnetic and Mott transitions of the Hubbard model on the geometrically frustrated anisotropic checkerboard lattice at half filling using cellular dynamical mean-field theory. Phase diagrams over a wide area of the parameter space are obtained by varying the interparticle interaction strength, geometric frustration strength, and temperature. Our results show that frustration and thermal fluctuations play a competing role against the interactions and in general favor a metallic phase without antiferromagnetic order. Due to their interplay, the system exhibits competition between antiferromagnetic insulator, antiferromagnetic metal, paramagnetic insulator, and paramagnetic metal phases in the intermediate-interaction regime. In the strong-interaction limit, which reduces to the Heisenberg model, our result is consistent with previous studies.
|
Received: 11 June 2019
Revised: 05 August 2019
Accepted manuscript online:
|
PACS:
|
71.10.-w
|
(Theories and models of many-electron systems)
|
|
05.30.Rt
|
(Quantum phase transitions)
|
|
71.10.Fd
|
(Lattice fermion models (Hubbard model, etc.))
|
|
Corresponding Authors:
Hai-Di Liu
E-mail: hdliu@wipm.ac.cn
|
Cite this article:
Hai-Di Liu(刘海迪) Hubbard model on an anisotropic checkerboard lattice at finite temperatures: Magnetic and metal-insulator transitions 2019 Chin. Phys. B 28 107102
|
[41] |
Yoshioka T, Koga A and Kawakami N 2009 Phys. Rev. Lett. 103 036401
|
[1] |
Hagemann I S, Huang Q, Gao X P A, Ramirez A P and Cava R J 2001 Phys. Rev. Lett. 86 894
|
[2] |
Fujimoto S 2002 Phys. Rev. Lett. 89 226402
|
[3] |
Kimura T, Kuroki K, Arita R and Aoki H 2004 Phys. Rev. B 69 054501
|
[4] |
Ohashi T, Momoi T, Tsunetsugu H, and Kawakami N 2008 Phys. Rev. Lett. 100 076402
|
[5] |
Takeda T, Nagata M, Kobayashi H, Kanno R, Kawamoto Y, Takano M, Kamiyama T, Izumi F and Sleight A W 1998 J. Solid State Chem. 140 182
|
[6] |
Sakai H, Kato M, Yoshimura K and Kosuge K 2002 J. Phys. Soc. Jpn. 71, 422
|
[7] |
Kondo S, Johnston D C, Swenson C A, Borsa F, Mahajan A V, Miller L L, Gu T, Goldman A I, Maple M B, Gajewski D A, Freeman E J, Dilley N R, Dickey R P, Merrin J, Kojima K, Luke G M, Uemura Y J, Chmaissem O and Jorgensen J D 1997 Phys. Rev. Lett. 78 3729
|
[8] |
Parcollet O, Biroli G and Kotliar G 2004 Phys. Rev. Lett. 92 226402
|
[9] |
Ohashi T, Kawakami N and Tsunetsugu H 2006 Phys. Rev. Lett. 97 066401
|
[10] |
Imada M, Fujimori A and Tokura Y 1998 Rev. Mod. Phys. 70 1039
|
[11] |
Dagotto E 1994 Rev. Mod. Phys. 66, 763
|
[12] |
Rohringer G, Hafermann H, Toschi A, Katanin A A, Antipov A E, Katsnelson M I, Lichtenstein A I, Rubtsov A. N and Held K 2018 Rev. Mod. Phys. 90 025003
|
[13] |
Shimizu Y, Miyagawa K, Kanoda K, Maesato M and Saito G 2003 Phys. Rev. Lett. 91 107001
|
[14] |
Binder K and Young A P 1986 Rev. Mod. Phys. 58 801
|
[15] |
Nisoli C, Moessner R and Schiffer P 2013 Rev. Mod. Phys. 85, 1473
|
[16] |
Xu Y, Xiong Z, Wu H Q and Yao D X 2019 Phys. Rev. B 99 085112
|
[17] |
Zeng T S, Zhu W and Sheng D 2018 npj Quantum Materials 3 49
|
[18] |
Wu H Q, He Y Y, Fang C, Meng Z Y and Lu Z Y 2016 Phys. Rev. Lett.117, 066403
|
[19] |
Moessner R and Chalker J T 1998 Phys. Rev. B 58, 12049
|
[20] |
Berg E, Altman E and Auerbach A 2003 Phys. Rev. Lett. 90 147204
|
[21] |
Moukouri S 2008 Phys. Rev. B 77, 052408
|
[22] |
Lieb E H and Schupp P 1999 Phys. Rev. Lett. 83, 5362
|
[23] |
Berg E, Altman E and Auerbach A 2004 Phys. Rev. Lett. 90, 147204
|
[24] |
Capponi B 2017 Phys. Rev. B 95, 014420
|
[25] |
Morita K and Shibata N 2016 Phys. Rev. B 94, 140404(R)
|
[26] |
Brenig W and Grzeschik M 2004 Phys. Rev. B 69, 064420
|
[27] |
Pollmann F, Betouras J J, Shtengel K and Fulde P 2006 Phys. Rev. Lett. 97 170407
|
[28] |
Yoshioka T, Koga A and Kawakami N 2008 J. Phys. Soc. Jpn. 77 104702
|
[29] |
Swain N and Majumdar P 2017 J. Phys.: Condens. Matter 29 085603
|
[30] |
Yoshioka T, Koga A and Kawakami N 2008 Phys. Rev. B 78 165113
|
[31] |
Isoda M and Mori S 2000 J. Phys. Soc. Jpn. 69 1509
|
[32] |
Fujimoto S 2001 Phys. Rev. B 64 085102
|
[33] |
Kotliar G, Savrasov S Y, Palsson G and Biroli G 2001 Phys. Rev. Lett. 87 186401
|
[34] |
Maier T, Jarrell M, Pruschke T and Hettler M H 2005 Rev. Mod. Phys. 77 1027
|
[35] |
Park H, Haule K and Kotliar G 2008 Phys. Rev. Lett. 101 186403
|
[36] |
Gull E, Millis A J, Lichtenstein A I, Rubtsov A N, Troyer M and Werner P 2011 Rev. Mod. Phys. 83 349
|
[37] |
Rubtsov A N, Savkin V V and Lichtenstein A I 2005 Phys. Rev. B 72 035122
|
[38] |
Jarrell M and Gubernatis J E 1996 Phys. Rep. 269 133
|
[39] |
Imai Y and Kawakami N 2002 Phys. Rev. B 65 233103
|
[40] |
Huscroft C, Jarrell M, Maier T, Moukouri S and Tahvildarzadeh A N 2001 Phys. Rev. Lett. 86 139
|
[41] |
Yoshioka T, Koga A and Kawakami N 2009 Phys. Rev. Lett. 103 036401
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|