Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(1): 017301    DOI: 10.1088/1674-1056/24/1/017301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Tight-binding electron-phonon coupling and band renormalization in graphene

Zhang De-Sheng (张德生)a b, Kang Guang-Zhen (康广震)b, Li Jun (李俊)a b
a National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China;
b Department of Physics, Nanjing University, Nanjing 210093, China
Abstract  The kink structure in the quasiparticle spectrum of electrons in graphene observed at 200 meV below the Fermi level by angle-resolved photoemission spectroscopy (ARPES) was claimed to be caused by a tight-binding electron-phonon (e-ph) coupling in the previous theoretical studies. However, we numerically find that the e-ph coupling effect in this approach is too weak to account for the ARPES data. The former agreement between this approach and the ARPES data is due to an enlargement of the coupling constant by almost four times.
Keywords:  graphene      electron-phonon interaction      kink      effective mass-renormalization parameter  
Received:  02 July 2014      Revised:  29 August 2014      Accepted manuscript online: 
PACS:  73.22.Pr (Electronic structure of graphene)  
  71.10.-w (Theories and models of many-electron systems)  
  71.18.+y (Fermi surface: calculations and measurements; effective mass, g factor)  
  71.38.-k (Polarons and electron-phonon interactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10574063, 11275097, 10935001, 11274166, and 11075075), the National Basic Research Program of China (Grant No. 2012CB921504), and the Research Fund for the Doctoral Program of Higher Education, China (Grant No. 2012009111002).
Corresponding Authors:  Zhang De-Sheng     E-mail:  zhangdesheng99@gmail.com

Cite this article: 

Zhang De-Sheng (张德生), Kang Guang-Zhen (康广震), Li Jun (李俊) Tight-binding electron-phonon coupling and band renormalization in graphene 2015 Chin. Phys. B 24 017301

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Wallace P R 1947 Phys. Rev. 71 622
[3] Castro Neto A H, Guniea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[4] Bostwick A, Ohta T, Seyller T, Horn K and Rotenberg E 2007 Nat. Phys. 3 36
[5] Bianchi M, Rienks E D L, Lizzit S, Baraldi A, Balog R, Hornekær L and Hofmann Ph 2010 Phys. Rev. B 81 041403(R)
[6] Park C H, Giustino F, Spataru C D, Cohen M L and Louie S G 2009 Nano. Lett. 9 4234
[7] Haberer D, Petaccia L, Fedorov A V, Praveen C S, Fabris S, Piccinin S, Vilkov O, Vyalikh D V, Preobrajenski A, Verbitskiy N I, Shiozawa H, Fink J, Knupfer M, Büchner B and Grüneis A 2013 Phys. Rev. B 88 081401(R)
[8] Carbotte J P, Nicol E J and Sharapov S G 2010 Phys. Rev. B 81 045419
[9] Calandra M and Mauri F 2007 Phys. Rev. B 76 205411
[10] Tse W K and Das Sarma S 2007 Phys. Rev. Lett. 99 236802
[11] Hwang E H and Das Sarma S 2008 Phys. Rev. B 77 081412(R)
[12] Kang G Z, Zhang D S and Li J 2013 Phys. Rev. B 88 045113
[13] Suzuura H and Ando T 2002 Phys. Rev. B 65 235412
[14] Ishikawa K and Ando T 2006 J. Phys. Soc. Jpn. 75 084713
[15] Ando T 2006 J. Phys. Soc. Jpn. 75 124701
[16] Stauber T and Peres N M R 2008 J. Phys: Condens. Matter 20 055002
[17] Stauber T, Peres N M R and Castro Neto A H 2008 Phys. Rev. B 78 085418
[18] He L M 2013 Chin. Phys. B 22 017201
[19] Pletikosić I, Kralj M, Milun M and Pervan P 2012 Phys. Rev. B 85 155447
[20] Carbotte J P, LeBlanc J P F and Ashby Phillip E C 2013 Phys. Rev. B 87 045405
[21] LeBlanc J P F, Carbotte J P and Nicol E J 2011 Phys. Rev. B 84 165448
[22] Das Sarma S, Hwang E H and Tse W K 2007 Phys. Rev. B 75 121406(R)
[23] Hwang E H, Ben Y K and Das Sarma S 2007 Phys. Rev. B 76 115434
[24] Barlas Y, Pereg-Barnea T, Polini M, Asgari R and MacDonald A H 2007 Phys. Rev. Lett. 98 236601
[25] Piscanec S, Lazzeri M, Mauri F, Ferrari A C and Robertson J 2004 Phys. Rev. Lett. 93 185503
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[7] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[8] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[9] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[10] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[13] Erratum to “ Accurate GW0 band gaps and their phonon-induced renormalization in solids”
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2022, 31(5): 059901.
[14] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[15] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
No Suggested Reading articles found!