Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 076102    DOI: 10.1088/1674-1056/25/7/076102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Impurity effects on electrical conductivity of doped bilayer graphene in the presence of a bias voltage

E Lotfi1, H Rezania2, B Arghavaninia3, M Yarmohammadi4
1 Department of Physics, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran;
2 Department of Physics, Razi University, Kermanshah, Iran;
3 Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran;
4 Young researchers and Elite Club, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
Abstract  We address the electrical conductivity of bilayer graphene as a function of temperature, impurity concentration, and scattering strength in the presence of a finite bias voltage at finite doping, beginning with a description of the tight-binding model using the linear response theory and Green's function approach. Our results show a linear behavior at high doping for the case of high bias voltage. The effects of electron doping on the electrical conductivity have been studied via changing the electronic chemical potential. We also discuss and analyze how the bias voltage affects the temperature behavior of the electrical conductivity. Finally, we study the behavior of the electrical conductivity as a function of the impurity concentration and scattering strength for different bias voltages and chemical potentials respectively. The electrical conductivity is found to be monotonically decreasing with impurity scattering strength due to the increased scattering among electrons at higher impurity scattering strength.
Keywords:  bilayer graphene      Green's function      electrical conductivity  
Received:  25 January 2016      Revised:  15 March 2016      Accepted manuscript online: 
PACS:  61.46.-w (Structure of nanoscale materials)  
  62.25.-g (Mechanical properties of nanoscale systems)  
  61.46.Hk (Nanocrystals)  
  71.10.-w (Theories and models of many-electron systems)  
Corresponding Authors:  E Lotfi     E-mail:  lotfi.erf@gmail.com

Cite this article: 

E Lotfi, H Rezania, B Arghavaninia, M Yarmohammadi Impurity effects on electrical conductivity of doped bilayer graphene in the presence of a bias voltage 2016 Chin. Phys. B 25 076102

[1] McCann E and Fal'ko V I 2006 Phys. Rev. Lett. 96 086805
[2] Novoselov K S 2006 Nat. Phys. 2 177
[3] Novoselov K S 2005 Nature 438 197
[4] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[5] Koshino M and Ando T 2006 Phys. Rev. B 73 245403
[6] Nilsson J, Castro Neto A H, Guinea F and Peres N M R 2008 Phys. Rev. B 78 045405
[7] Cserti J, Csord'as A and D'avid G 2007 Phys. Rev. Lett. 99 66802
[8] Min H, Sahu B, Banerjee S K and MacDonald A H 2007 Phys. Rev. B 75 155115
[9] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[10] Weitz R T, Allen M T, Feldman B E, Martin J and Yacoby A 2010 Science 330 812
[11] Lemonik Y, Aleiner I L, Toke C and Fal'ko V I 2010 Phys. Rev. B 82 201408
[12] Castro E V, Peres N M R, Stauber T and Silva N A P 2008 Phys. Rev. Lett. 100 186803
[13] Nandkishore R and Levitov L 2010 Phys. Rev. Lett. 104 156803
[14] Zhang F, Min H, Polini M and MacDonald A H 2010 Phys. Rev. B 81 041402
[15] Vafek O and Yang K 2010 Phys. Rev. B 81 041401
[16] Guinea F, Castro Neto A H and Peres N M R 2006 Phys. Rev. B 73 245426
[17] Ohta T, Bostwick A, Seyller T, Horn K and Rotenberg E 2006 Science 313 951
[18] McCann E 2006 Phys. Rev. B 74 161403(R)
[19] Oostinga J B, Heersche H B, Liu X, Morpurgo A F and Vandersypen L M K 2007 Nat. Mater. 7 151
[20] Castro E V 2007 Phys. Rev. Lett. 99 216802
[21] Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature 490 192
[22] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotech. 5 722
[23] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[24] Novoselov K S, McCann E, Morozov S V, Fal'ko V I, Katsnelson M I, Zeitler U, Jiang D, Schedin F and Geim A K 2006 Nat. Phys. 2 177
[25] Ghosh S, Bao W, Nika D L, Subrina S, Pokatilov E P, Lau C N and Balandin A A 2010 Nat. Mater. 9 555
[26] Balandin A A 2011 Nat. Mater. 10 569
[27] Neek-Amal M and Peeters F M 2010 Phys. Rev. B 81 235421
[28] Zhang Y Y, Wang C M, Cheng Y and Xiang Y 2011 Carbon 49 4511
[29] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R and Geim A K 2008 Science 320 1308
[30] Bunch J S, Verbridge S S, Alden J S, an der Zande A M, Parpia J M, Craighead H G and McEuen P L 2008 Nano Lett. 8 2458
[31] Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K and Novoselov K S 2009 Science 323 610
[32] Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H and Iijima S 2010 Nat. Nanotech. 5 574
[33] Xia F, Farmer D B, Lin Y M and Avouris P 2010 Nano Lett. 10 715
[34] Wang C R, Lu W S, Hao L, Lee W L, Lee T K, Lin F, Cheng I C and Chen J Z 2011 Phys. Rev. Lett. 107 186602
[35] Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P and Xia F 2012 Nat. Nanotech. 7 330
[36] Yan J, Kim M H, Elle J A, Sushkov A B, Jenkins G S, Milchberg H M, Fuhrer M S and Drew H D 2012 Nat. Nanotech. 7 472
[37] Sugawara K, Kanetani K, Sato T and Takahashi T 2011 AIP Adv. 1 022103
[38] Kanetani K, Sugawara K, Sato T, Shimizu R, Iwaya K, Hitosugi T and Takahashia T 2012 Proc. Natl. Acad. Sci. USA 109 19610
[39] Gong L, Young R J, Kinloch I A, Riaz I, Jalil R and Novoselov K S 2012 ACS Nano 6 2086
[40] Young R J, Kinloch I A, Gong L and Novoselov K S 2012 Compos. Sci. Technol. 72 1459
[41] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[42] Oostinga J B, Heersche H B, Liu X, Morpurgo A F and Vandersypen L M K 2007 Nat. Mat.
[43] Milton Pereira J J, Vasilopoulos P and Peeters F M 2007 Nano Lett. 7 946
[44] Nilsson J, Castro Neto A H, Guinea F, and Peres N M R 2007 Phys. Rev. B 76 165416
[45] Katsnelson M I 2007 Phys. Rev. B 76 073411
[46] Kechedzhi K, Falko V I, McCann E and Altshuler B L 2007 Phys. Rev. Lett. 98 176806
[47] Gorbachev R V, Tikhonekov F V, Mayorov A S, Horsell D W and Savchenko A K 2007 Phys. Rev. Lett. 98 176805
[48] Hao L and Lee T K 2010 Phys. Rev. B 81 165445
[49] Rezania H and Yarmohammadi M 2016 Superlattices and Microstructures 89 15
[50] Rezania H and Yarmohammadi M 2016 Physica E 75 125
[51] Zhou S Y, Gweon G H and Lanzara A 2006 Annals of Physics 321 1730
[52] Ohta T, Bostwick A, Seyller T, Horn K and Rotenberg E 2006 Science 313 951
[53] Mallet P, Varchon F, Naud C, Magaud L, Berger C and Veuillen J Y 2007 Phys. Rev. B 76 041403
[54] Li G and Andrei E V 2007 Nat. Phys. 3 623
[55] Doniach S and Sondheimer E H 1988 Green's Function for Solid State Physicists (Singapour: World Scientific) p. 125
[56] Mahan G D 1993 Many Particle Physics (New York: Plenumn Press) p. 123
[57] Nilsson J, Castro A H, Guinea F and Peres N M 2006 Phys. Rev. Lett. 97 266801
[58] Fetter A L and Walecka J D 1971 Quantum Theory of Many Particle Systems (New York: MacGraw-Hill) p. 130
[59] Rezania H and Abdi A 2015 Euro. Phys. J. B 88 173
[60] Cserti J 2007 Phys. Rev. B 75 033405
[61] Cserti J, Csordas A and David G 2007 Phys. Rev. Lett. 99 066802
[62] Ohta T, Bostwick A, McChesney J L, Seyller T, Horn K and Rotenberg E 2007 Phys. Rev. Lett. 98 206802
[1] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[2] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[3] Observation of quadratic magnetoresistance in twisted double bilayer graphene
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yiru Ji(季怡汝), Jinpeng Tian(田金朋), Fanfan Wu(吴帆帆), Jian Tang(汤建), Yalong Yuan(袁亚龙), Yanchong Zhao(赵岩翀), Xiaozhou Zan(昝晓州), Rong Yang(杨蓉), Kenji Watanabe, Takashi Taniguchi, Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(10): 107201.
[4] Projective representation of D6 group in twisted bilayer graphene
Noah F. Q. Yuan. Chin. Phys. B, 2021, 30(7): 070311.
[5] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[6] Progress on band structure engineering of twisted bilayer and two-dimensional moirè heterostructures
Wei Yao(姚维), Martin Aeschlimann, and Shuyun Zhou(周树云). Chin. Phys. B, 2020, 29(12): 127304.
[7] Electronic and thermoelectric properties of alkali metal-based perovskites CsYbF3 and RbYbF3
Q Mahmood, N A Noor, T Ghrib, Nessrin A Kattan, Asif Mahmood, and Shahid M Ramay. Chin. Phys. B, 2020, 29(11): 117305.
[8] Twistronics in graphene-based van der Waals structures
Ya-Ning Ren(任雅宁), Yu Zhang(张钰), Yi-Wen Liu(刘亦文), and Lin He(何林). Chin. Phys. B, 2020, 29(11): 117303.
[9] Quantum anomalous Hall effect in twisted bilayer graphene quasicrystal
Zedong Li(李泽东) and Z F Wang(王征飞)†. Chin. Phys. B, 2020, 29(10): 107101.
[10] Modulation of magnetic and electrical properties of bilayer graphene quantum dots using rotational stacking faults
Hong-Ping Yang(杨宏平), Wen-Juan Yuan(原文娟), Jun Luo(罗俊), Jing Zhu(朱静). Chin. Phys. B, 2019, 28(7): 078106.
[11] Possible nodeless s±-wave superconductivity in twisted bilayer graphene
Zhe Liu(刘哲), Yu Li(李宇), Yi-Feng Yang(杨义峰). Chin. Phys. B, 2019, 28(7): 077103.
[12] Influence of anisotropy on the electrical conductivity and diffusion coefficient of dry K-feldspar: Implications of the mechanism of conduction
Li-Dong Dai(代立东), Hai-Ying Hu(胡海英), He-Ping Li(李和平), Wen-Qing Sun(孙文清), Jian-Jun Jiang(蒋建军). Chin. Phys. B, 2018, 27(2): 028703.
[13] Transport properties in monolayer-bilayer-monolayer graphene planar junctions
Kai-Long Chu(储开龙), Zi-Bo Wang(王孜博), Jiao-Jiao Zhou(周娇娇), Hua Jiang(江华). Chin. Phys. B, 2017, 26(6): 067202.
[14] Orbital electronic heat capacity of hydrogenated monolayer and bilayer graphene
Mohsen Yarmohammadi. Chin. Phys. B, 2017, 26(2): 026502.
[15] Performance improvement of continuous carbon nanotube fibers by acid treatment
Qiang Zhang(张强), Kewei Li(李克伟), Qingxia Fan(范庆霞), Xiaogang Xia(夏晓刚), Nan Zhang(张楠), Zhuojian Xiao(肖卓建), Wenbin Zhou(周文斌), Feng Yang(杨丰), Yanchun Wang(王艳春), Huaping Liu(刘华平), Weiya Zhou(周维亚). Chin. Phys. B, 2017, 26(2): 028802.
No Suggested Reading articles found!