CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Antiferromagnetism and Kondo screening on a honeycomb lattice |
Lin Heng-Fu (林恒福), Tao Hong-Shuai (陶红帅), Guo Wen-Xiang (郭文祥), Liu Wu-Ming (刘伍明) |
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Magnetic adatoms in the honeycomb lattice have received tremendous attention due to the interplay between Ruderman–Kittel–Kasuya–Yosida interaction and Kondo coupling leading to very rich physics. Here we study the competition between the antiferromagnetism and Kondo screening of local moments by the conduction electrons on the honeycomb lattice using the determinant quantum Monte Carlo method. While changing the interband hybridization V, we systematically investigate the antiferromagnetic-order state and the Kondo singlet state transition, which is characterized by the behavior of the local moment, antiferromagnetic structure factor, and the short range spin-spin correlation. The evolution of the single particle spectrum are also calculated as a function of hybridization V, we find that the system presents a small gap in the antiferromagnetic-order region and a large gap in the Kondo singlet region in the Fermi level. We also find that the localized and itinerant electrons coupling leads to the midgap states in the conduction band in the Fermi level at very small V. Moreover, the formation of antiferromagnetic order and Kondo singlet are studied as on-site interaction U or temperature T increasing, we have derived the phase diagrams at on-site interaction U (or temperature T) and hybridization V plane.
|
Received: 23 December 2014
Revised: 16 January 2015
Accepted manuscript online:
|
PACS:
|
71.10.-w
|
(Theories and models of many-electron systems)
|
|
75.10.Hk
|
(Classical spin models)
|
|
75.10.-b
|
(General theory and models of magnetic ordering)
|
|
71.10.Fd
|
(Lattice fermion models (Hubbard model, etc.))
|
|
Fund: Project supported by the National Key Basic Research Special Foundation of China (Grants Nos. 2011CB921502 and 2012CB821305), the National Natural Science Foundation of China (Grants Nos. 61227902, 61378017, and 11434015), the State Key Laboratory for Quantum Optics and Quantum Optical Devices, China (Grant No. KF201403). |
Corresponding Authors:
Lin Heng-Fu
E-mail: hengfulin@126.com
|
About author: 71.10.-w; 75.10.Hk; 75.10.-b; 71.10.Fd |
Cite this article:
Lin Heng-Fu (林恒福), Tao Hong-Shuai (陶红帅), Guo Wen-Xiang (郭文祥), Liu Wu-Ming (刘伍明) Antiferromagnetism and Kondo screening on a honeycomb lattice 2015 Chin. Phys. B 24 057101
|
[1] |
Andres K, Graebner J and Ott H R 1975 Phys. Rev. Lett. 35 1779
|
[2] |
Steglich F, Aarts J, Bredl C D, Meshida D E, Franz W and Schafer H 1976 Phys. Rev. Lett. 43 1892
|
[3] |
Bucher E, Maita J P, Hull G W, Fulton R C and Cooper A S 1975 Phys. Rev. B 11 440
|
[4] |
Stewart G 2001 Rev. Mod. Phys. 73 797
|
[5] |
Varma C, Nussinov Z and van saarlos W 2002 Phys. Rep. 361 267
|
[6] |
Wilson K G 1975 Rev. Mod. Phys. 47 773
|
[7] |
Qiu P Y 2014 Chin. Phys. Lett. 31 066201
|
[8] |
Aquino F and Rodriguez J H 2005 J. Chem. Phys. 123 204902
|
[9] |
Hewson A C 1993 The Kondo Problem to Heay Fermions (Cambridge: Cambridge University Press)
|
[10] |
Assaad F F 1999 Phys. Rev. Lett. 83 796
|
[11] |
Neto A H C, Guinea F, Peres N M R, Novoselov K S and Geim A K 2006 Rev. Mod. Phys. 81 109
|
[12] |
Kotov V N, Uchoa B, Pereira V M, Guinea F and Neto A H C 2012 Rev. Mod. Phys. 84 1067
|
[13] |
Rowlands D A and Zhang Y Z 2014 Chin. Phys. B 23 037101
|
[14] |
Zhou J L, Gan P and Hu S D 2012 Chin. Phys. B 21 027101
|
[15] |
Guzmanverri G G and Lew Y V L C 2007 Phys. Rev. B 76 075131
|
[16] |
Vogt P, DePadova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501
|
[17] |
Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
|
[18] |
Meng Z Y, Lang T C, Wessel S, Assaad F F and Muramatsu A 2010 Nature 464 847
|
[19] |
Assaad F F and Herbut I F 2013 Phys. Rev. X 3 031010
|
[20] |
Raghu S, Qi X L, Honerkamp C and Zhang S C 2008 Phys. Rev. Lett. 100 156401
|
[21] |
Liu H D, Chen Y H, Lin H F and Wu J H 2014 Chin. Phys. B 23 077101
|
[22] |
Chen J H, Li L, Cullen W G, Williams E D and Fuhrer M S 2011 Nat. Phys. 7 535.
|
[23] |
Withoff D and Fradkin E 1990 Phys. Rev. Lett. 64 1835
|
[24] |
Cornaglia P S, Usaj G and Balseiro C A 2009 Phys. Rev. Lett. 102 0x46801
|
[25] |
Wehling T O, Balatsky A V, Katsnelson M I, Lichtenstein A I and Rosch A 2010 Phys. Rev. B 81 115427
|
[26] |
Black-Schaffer A M 2010 Phys. Rev. B 81 205416
|
[27] |
Daghofer M, Zheng N and Moreo A 2010 Phys. Rev. B 82 121405
|
[28] |
Smirnova O 2009 J. Am. Chem. Soc. 131 8313
|
[29] |
Kandpal H C and van den Brink 2011 J. Phys. Rev. B 83 140412
|
[30] |
Breger J 2005 J. Solid State Chem. 178 2575
|
[31] |
Bauer J, Salomon C and Demier E 2013 Phys. Rev. Lett. 111 215304
|
[32] |
Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
|
[33] |
Kechedzhi K, Falko V I, McCann E and Altshuler B L 2007 Phys. Rev. Lett. 98 176806
|
[34] |
Goldman N, Kubasiak A, Bermudez A, Gaspard P, Lewenstein M and Martin-Delgado M A 2009 Phys. Rev. Lett. 103 035301
|
[35] |
Ruderman M A and Kittel C 1954 Phys. Rev. 96 99
|
[36] |
Kondo J 1964 Prog. Theor. Phys. 32 37
|
[37] |
Motome Y, Nakamikawa K, Yamaji Y and Udagawa M 2010 Phys. Rev. Lett. 105 036403
|
[38] |
Misawa T, Yoshitake J and Motome Y 2013 Phys. Rev. Lett. 110 246401
|
[39] |
Ishizuka H and Motome Y 2012 Phys. Rev. Lett. 108 257205
|
[40] |
Anderson P W 1961 Phys. Rev. 124 41
|
[41] |
Schriffer J R and Wolff P A 1966 Phys. Rev. 149 491
|
[42] |
Scalapino D J and Sugar R L 1981 Phys. Rev. Lett. 46 519
|
[43] |
Loh E Y and Gubernatis J E 1992 Modern Problems in Condensed Matter Sciences (North-Holland: Amsterdam) pp. 177-193
|
[44] |
Bai Z, Chen W, Scalettar R, Yamazaki I 2009 Multi-Scale Phenomena in Complex Fluids (Beijing: Higher Education Press) pp. 1-110
|
[45] |
Scalettar R T, Noack R M and Singh R R P 1991 Phys. Rev. B 44 10502
|
[46] |
Jarrell M and Gubernatis J E 1996 Phys. Rep. 269 133
|
[47] |
Wakabayashi K and Sigrist M 2000 Phys. Rev. Lett. 84 3390
|
[48] |
Pereira V M, Guinea F, Lopes dos Santos J M B, Peres N M R and Castro N A H 2005 Phys. Rev. Lett. 96 036801
|
[49] |
Georges A, Kotliar G, Krauth W and Rozenberg M J 1996 Rev. Mod. Phys. 68 13
|
[50] |
Maier T, Jarrell M, Pruschke T and Hettler M H 2005 Rev. Mod. Phys. 77 1027
|
[51] |
Kotliar G, Savrasov S Y, Pálsson G and Biroli G 2001 Phys. Rev. Lett. 87 186401
|
[52] |
Limot L, Mendels P, Collin G, Mondelli C, Ouladdiaf B, Mutka H, Blanchard N and Mekata M 2002 Phys. Rev. B 65 144447
|
[53] |
Damascelli A, Hussain Z and Shen Z X 2003 Rev. Mod. Phys. 75 473
|
[54] |
Paschen S, Luhmann T, Wirth S, Gegenwart P, Trovarelli O, Geibel C, Steglich F, Coleman P and Si Q 2004 Nature 432 881
|
[55] |
Shishido H, Settai R, Harima H and Onuki Y 2005 J. Phys. Soc. Jpn. 74 1103
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|