Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 098503    DOI: 10.1088/1674-1056/ab343f
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Performance improvement of 4H-SiC PIN ultraviolet avalanche photodiodes with different intrinsic layer thicknesses

Xiaolong Cai(蔡小龙)1,2, Dong Zhou(周东)1, Liang Cheng(程亮)1, Fangfang Ren(任芳芳)1, Hong Zhong(钟宏)2, Rong Zhang(张荣)1, Youdou Zheng(郑有炓)1, Hai Lu(陆海)1
1 School of Electronic Science and Engineering, Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Nanjing University, Nanjing 210093, China;
2 Technology Planning Department, State Key Laboratory of Mobile Network and Mobile Multimedia Technology, ZTE Corporation, Nanjing 210012, China
Abstract  

Four 4H-SiC p-i-n ultraviolet (UV) avalanche photodiode (APD) samples PIN-0.1, PIN-0.35, PIN-0.5, and PIN-1.0 with different intrinsic layer thicknesses (0.1 μm, 0.35 μm, 0.5 μm, and 1.0 μm, respectively) are designed and fabricated. Single photon detection efficiency (SPDE) performance becomes better as the intrinsic layer thickness increases, which is attributed to the inhibitation of tunneling. Dark count origin is also investigated, an activation energy as small as 0.22 eV of the dark count rate (DCR) confirms that the trap-assisted tunneling (TAT) process is the main source of DCR. The temperature coefficient ranges from -2.6 mV/℃ to 18.3 mV/℃, demonstrating that the TAT process is dominant in APDs with thinner intrinsic layers. Additionally, the room temperature maximum quantum efficiency at 280 nm differs from 48% to 65% for PIN-0.35, PIN-0.5, and PIN-1.0 under 0 V bias, and UV/visible rejection ratios higher than 104 are obtained.

Keywords:  4H-SiC      avalanche photodiode      single photon detection efficiency      tunneling  
Received:  10 April 2019      Revised:  25 June 2019      Accepted manuscript online: 
PACS:  85.30.-z (Semiconductor devices)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0400902) and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.

Corresponding Authors:  Hai Lu     E-mail:  hailu@nju.edu.cn

Cite this article: 

Xiaolong Cai(蔡小龙), Dong Zhou(周东), Liang Cheng(程亮), Fangfang Ren(任芳芳), Hong Zhong(钟宏), Rong Zhang(张荣), Youdou Zheng(郑有炓), Hai Lu(陆海) Performance improvement of 4H-SiC PIN ultraviolet avalanche photodiodes with different intrinsic layer thicknesses 2019 Chin. Phys. B 28 098503

[1] Sciuto A, Mazzillo M, Di Franco S, Roccaforte F and D'Arrigo G 2015 IEEE Photon. J. 7 1
[2] Burenkov A, Matthus C D and Erlbacher T 2016 IEEE Sens. J. 16 4246
[3] Zhou X Y, Li J, Lu W, Wang Y G, Song X B, Yin S Z, Tan X, Lü Y J, Guo H Y and Gu G D 2018 Chin. Opt. Lett. 16 060401
[4] Su L L, Cai X L, Lu H, Zhou D, Xu W Z, Chen D J, Ren F F, Zhang R, Zheng Y d and Li G L 2019 IEEE Photon. Technol. Lett. 31 447
[5] Chong E, Koh Y J, Lee D H, Bae I H, Kim J S, Jeong Y S, Ryu J Y, Lee J Y, Kang M J and Park J H 2019 Solid-State Electron. 156 1
[6] Zappa F, Tisa S, Tosi A and Cova S 2007 Sens. Actuators A 140 103
[7] Zhou D, Liu F, Lu H, Chen D J, Ren F F, Zhang R and Zheng Y D 2014 IEEE Photon. Technol. Lett. 26 1136
[8] Bai X G, Mcintosh D, Liu H D and Campbell J C 2007 IEEE Photon. Technol. Lett. 19 1822
[9] Bai X G, Liu H D, Mcintosh D C and Campbell J C 2009 IEEE J. Quantum Elect. 45 300
[10] Konstantinov A, Wahab Q, Nordell N and Lindefelt U 1997 Appl. Phys. Lett. 71 90
[11] Vilá A, Trenado J, Arbat A, Comerma A, Gascon D, Garrido L and Dieguez A 2011 Sens. Actuators A 172 181
[12] Liu M G, Hu C, Bai X G, Guo X Y, Campbell J C, Pan Z and Tashima M M 2007 IEEE J. Sel. Top. Quantum Electron. 13 887
[13] Neudeck P G and Fazi C 1997 IEEE Electron Device Lett. 18 96
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[3] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[4] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[5] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[6] Spatially modulated scene illumination for intensity-compensated two-dimensional array photon-counting LiDAR imaging
Jiaheng Xie(谢佳衡), Zijing Zhang(张子静), Mingwei Huang(黄明维),Jiahuan Li(李家欢), Fan Jia(贾凡), and Yuan Zhao(赵远). Chin. Phys. B, 2022, 31(9): 090701.
[7] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[8] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[9] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[10] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[11] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[12] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[13] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[14] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[15] Anisotropic refraction and valley-spin-dependent anomalous Klein tunneling in a 1T'-MoS2-based p-n junction
Fenghua Qi(戚凤华) and Xingfei Zhou(周兴飞). Chin. Phys. B, 2022, 31(7): 077301.
No Suggested Reading articles found!