Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 078102    DOI: 10.1088/1674-1056/28/7/078102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Growth of high quality Sr2IrO4 epitaxial thin films onconductive substrates

Hui Xu(徐珲)1, Zhangzhang Cui(崔璋璋)1,2, Xiaofang Zhai(翟晓芳)1,3, Yalin Lu(陆亚林)1,2,4
1 Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China;
2 National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China;
3 Synergy Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
4 Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Abstract  

Ruddlesden-Popper iridium oxides have attracted considerable interest because of the many proposed novel quantum states that arise from the large spin-orbit coupling of the heavy iridium atoms in them. A prominent example is the single layer Sr2IrO4, in which superconductivity has been proposed under electron doping. However, the synthesis of Sr2IrO4 high quality thin films has been a huge challenge due to the easy formation of impurities associated with different numbers of SrO layers. Thus techniques to optimize the growth of pure phase Sr2IrO4 are urgently required. Here we report the deposition of high quality Sr2IrO4 thin films on both insulating SrTiO3 and conducting SrTiO3:Nb substrates using pulsed laser deposition assisted with reflective high-energy electron diffraction. The optimal deposition temperature of Sr2IrO4 epitaxial films on SrTiO3:Nb substrates is about 90 °C lower than that on SrTiO3 substrates. The electrical transports of high quality Sr2IrO4 films are measured, which follow the three-dimensional Mott variable-range hopping model. The film magnetizations are measured, which show weak ferromagnetism below~240 K with a saturation magnetization of~0.2 μB/Ir at 5 K. This study provides applicable methods to prepare high quality 5d Sr2IrO4 epitaxial films, which could be extended to other Ruddlesden-Popper phases and potentially help the future study of exotic quantum phenomena in them.

Keywords:  substrates      pulsed laser deposition      iridates      conduction mechanism  
Received:  18 February 2019      Revised:  01 April 2019      Accepted manuscript online: 
PACS:  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
  61.05.jh (Low-energy electron diffraction (LEED) and reflection high-energy electron diffraction (RHEED))  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51627901 and 11574287), the National Key Research and Development Program of China (Grant No. 2016YFA0401004), and Hefei Science Center-Chinese Academy of Sciences (Grant No. 2016HSC-IU004). X. Z. acknowledges the support of the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2016389).

Corresponding Authors:  Xiaofang Zhai, Yalin Lu     E-mail:  xfzhai@ustc.edu.cn;yllu@ustc.edu.cn

Cite this article: 

Hui Xu(徐珲), Zhangzhang Cui(崔璋璋), Xiaofang Zhai(翟晓芳), Yalin Lu(陆亚林) Growth of high quality Sr2IrO4 epitaxial thin films onconductive substrates 2019 Chin. Phys. B 28 078102

[1] Nishio K, Hwang H Y and Hikita Y 2016 APL Mater. 4 036102
[2] Lu C L, Quindeau A, Deniz H, Preziosi D, Hesse D and Alexe M 2014 Appl. Phys. Lett. 105 082407
[3] Zhang K L, Fan C C, Liu W L, Wu Y F, Lu X L, Liu Z T, Liu J S, Liu Z H and Shen D W 2018 Chin. Phys. B 27 088103
[4] Nichols J, Terzic J, Bittle E G, Korneta O B, De Long L E, Brill J W, Cao G and Seo S S A 2013 Appl. Phys. Lett. 102 141908
[5] Liu X R, Cao Y W, Pal B, Middey S, Kareev M, Choi Y, Shafer P, Haskel D, Arenholz E and Chakhalian J 2017 Phys. Rev. Mater. 1 075004
[6] Kim B J, Moon S J, Kim J Y, Park B G, Leem C S, Yu J, Noh T W, Kim C, Oh S J, Park J H, Durairaj V, Cao G and Rotenberg E 2008 Phys. Rev. Lett. 101 076402
[7] Cao G, Bolivar J, Mccall S, Crow J E and Guertin R P 1998 Phys. Rev. B 57 R11039
[8] Mitchell J F 2015 APL Mater. 3 062404
[9] Watanabe H, Shirakawa T and Yunoki S 2013 Phys. Rev. Lett. 110 027002
[10] Chen B J, Yang N, Zhong N, Tang X D, Yang P X, Xiang P H and Duan C G 2017 Mater. Lett. 202 96
[11] Meng D C, Zhai X F, Ma C, Huang H L, Yun Y, Huang Y, Fu Z P, Peng R R, Mao X Y, Chen X B, Brown G and Lu Y L 2015 Appl. Phys. Lett. 106 212906
[12] Yun Y, Zhai X F, Ma C, Huang H L, Meng D C, Cui Z Z, Wang J L, Fu Z P, Peng R R, Brown G J and Lu Y L 2015 Appl. Phys. Express 8 054001
[13] Cui Z Z, Xu H, Yun Y, Guo J H, Chuang Y D, Huang H L, Meng D C, Wang J L, Fu Z P, Peng R R, Knize R J, Brown G J, Zhai X F and Lu Y L 2016 J. Appl. Phys. 120 084101
[14] Serrao C R, Liu J, Heron J T, Singh-Bhalla G, Yadav A, Suresha S J, Paull R J, Yi D, Chu J H, Trassin M, Vishwanath A, Arenholz E, Frontera C, Zelezny J, Jungwirth T, Marti X and Ramesh R 2013 Phys. Rev. B 87 085121
[15] Yun Y, Ma C, Zhai X F, Huang H L, Meng D C, Wang J L, Fu Z P, Peng R R, Brown G J and Lu Y L 2015 Appl. Phys. Lett. 107 011602
[16] Lee J H, Luo G, Tung I C, Chang S H, Luo Z, Malshe M, Gadre M, Bhattacharya A, Nakhmanson S M, Eastman J A, Hong H, Jellinek J, Morgan D, Fong D D and Freel J W 2014 Nat. Mater. 13 879
[17] Zheng H M, Zhan Q, Zavaliche F, Sherburne M, Straub F, Cruz M P, Chen L Q, Dahmen U and Ramesh R 2006 Nano Lett. 6 1401
[1] Pressure-induced anomalous insulating behavior in frustrated iridate La3Ir3O11
Chun-Hua Chen(陈春华), Yong-Hui Zhou(周永惠), Ying Zhou(周颖), Yi-Fang Yuan(袁亦方), Chao An(安超), Xu-Liang Chen(陈绪亮), Zhao-Ming Tian(田召明), and Zhao-Rong Yang(杨昭荣). Chin. Phys. B, 2021, 30(6): 067402.
[2] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[3] A synaptic transistor with NdNiO3
Xiang Wang(汪翔), Chen Ge(葛琛), Ge Li(李格), Er-Jia Guo(郭尔佳), Meng He(何萌), Can Wang(王灿), Guo-Zhen Yang(杨国桢), Kui-Juan Jin(金奎娟). Chin. Phys. B, 2020, 29(9): 098101.
[4] Synthesis of new silicene structure and its energy band properties
Wei-Qi Huang(黄伟其), Shi-Rong Liu(刘世荣), Hong-Yan Peng(彭鸿雁), Xin Li(李鑫), Zhong-Mei Huang(黄忠梅). Chin. Phys. B, 2020, 29(8): 084202.
[5] Growth and aggregation of Cu nanocrystals on ionic liquid surfaces
Jia-Wei Shen(沈佳伟), Xun-Heng Ye(叶迅亨), Zhi-Long Bao(鲍志龙), Lu Li(李璐), Bo Yang(杨波), Xiang-Ming Tao(陶向明), Gao-Xiang Ye(叶高翔). Chin. Phys. B, 2020, 29(6): 066801.
[6] A low-dimensional crystal growth model on an isotropic and quasi-free sustained substrate
Chenxi Lu(卢晨曦), Senjiang Yu(余森江), Lingwei Li(李领伟), Bo Yang(杨波), Xiangming Tao(陶向明), Gaoxiang Ye(叶高翔). Chin. Phys. B, 2020, 29(3): 038101.
[7] Magnetoelastic coupling effect of Fe10Co90 films grown on different flexible substrates
Jiapeng Zhao(赵佳鹏), Qinhuang Guo(郭勤皇), Huizhong Yin(尹慧中), Jintang Zou(邹锦堂), Zhenjie Zhao(赵振杰), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2020, 29(11): 117501.
[8] Stacked lateral double-diffused metal-oxide-semiconductor field effect transistor with enhanced depletion effect by surface substrate
Qi Li(李琦), Zhao-Yang Zhang(张昭阳), Hai-Ou Li(李海鸥), Tang-You Sun(孙堂友), Yong-He Chen(陈永和), Yuan Zuo(左园). Chin. Phys. B, 2019, 28(3): 037201.
[9] Effect of substrate type on Ni self-assembly process
Xuzhao Chai(柴旭朝), Boyang Qu(瞿博阳), Yuechao Jiao(焦岳超), Ping Liu(刘萍), Yanxia Ma(马彦霞), Fengge Wang(王凤歌), Xiaoquan Li(李晓荃), Xiangqian Fang(方向前), Ping Han(韩平), Rong Zhang(张荣). Chin. Phys. B, 2019, 28(1): 016102.
[10] Preparation of Ga2O3 thin film solar-blind photodetectors based on mixed-phase structure by pulsed laser deposition
Y M Lu(吕有明), C Li(李超), X H Chen(陈相和), S Han(韩瞬), P J Cao(曹培江), F Jia(贾芳), Y X Zeng(曾玉祥), X K Liu(刘新科), W Y Xu(许望颖), W J Liu(柳文军), D L Zhu(朱德亮). Chin. Phys. B, 2019, 28(1): 018504.
[11] Growth of high-quality perovskite (110)-SrIrO3 thin films using reactive molecular beam epitaxy
Kai-Li Zhang(张凯莉), Cong-Cong Fan(樊聪聪), Wan-Ling Liu(刘万领), Yu-Feng Wu(吴宇峰), Xiang-Le Lu(卢祥乐), Zheng-Tai Liu(刘正太), Ji-Shan Liu(刘吉山), Zhong-Hao Liu(刘中灏), Da-Wei Shen(沈大伟). Chin. Phys. B, 2018, 27(8): 088103.
[12] Influence of anisotropy on the electrical conductivity and diffusion coefficient of dry K-feldspar: Implications of the mechanism of conduction
Li-Dong Dai(代立东), Hai-Ying Hu(胡海英), He-Ping Li(李和平), Wen-Qing Sun(孙文清), Jian-Jun Jiang(蒋建军). Chin. Phys. B, 2018, 27(2): 028703.
[13] Microstructure evolution of Cu atomic islands on liquid surfaces in the ambient atmosphere
Zhang Xiao-Fei (张晓飞), Chen Hang (陈杭), Yu Sen-Jiang (余森江). Chin. Phys. B, 2015, 24(7): 076103.
[14] Al-doping influence on crystal growth of Ni-Al alloy: Experimental testing of a theoretical model
Rong Xi-Ming (荣曦明), Chen Jun (陈骏), Li Jing-Tian (李菁田), Zhuang Jun (庄军), Ning Xi-Jing (宁西京). Chin. Phys. B, 2015, 24(12): 128706.
[15] Yb-doped passively mode-locked fiber laser with Bi2Te3-deposited
Li Lu (李璐), Yan Pei-Guang (闫培光), Wang Yong-Gang (王勇刚), Duan Li-Na (段利娜), Sun Hang (孙航), Si Jin-Hai (司金海). Chin. Phys. B, 2015, 24(12): 124204.
No Suggested Reading articles found!