Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 064208    DOI: 10.1088/1674-1056/28/6/064208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High-performance waveguide-integrated Ge/Si avalanche photodetector with small contact angle between selectively epitaxial growth Ge and Si layers

Xiao-Qian Du(杜小倩)1,2, Chong Li(李冲)3, Ben Li(黎奔)3, Nan Wang(王楠)1,2, Yue Zhao(赵越)1,2, Fan Yang(杨帆)1,2, Kai Yu(余凯)1,2, Lin Zhou(周琳)1,2, Xiu-Li Li(李秀丽)1,2,1,2, Bu-Wen Cheng(成步文)1,2, Chun-Lai Xue(薛春来)1,2
1 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Institute of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
Abstract  

Step-coupler waveguide-integrated Ge/Si avalanche photodetector (APD) is based on the vertical multimode interference (MMI), enhancing light scattering towards the Ge active region and creating mirror images of optical modes close to the Ge layer. However, there are two ineluctable contact angels between selectively epitaxial growth Ge and Si layers and selectively epitaxial growth Si and Si substrate, which has an effect on the coupling efficiency and the absorption of the photodetector. Therefore, step-coupled Ge/Si avalanche photodetectors with different step lengths are designed and fabricated. It is found that responsivity of APDs with step-coupler-length of 3.0 μm is 0.51 A/W at -6 V, 21% higher than that of 1.5 μm, which matches well with simulation absorption. The multiplication gain factor is as high as 50, and the maximum gain-bandwidth product reaches up to 376 GHz.

Keywords:  waveguides      photodetectors      waveguide devices  
Received:  24 January 2019      Revised:  14 March 2019      Accepted manuscript online: 
PACS:  42.82.Et (Waveguides, couplers, and arrays)  
  42.79.Gn (Optical waveguides and couplers)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFB0402502 and 2017YFF0104803), the National Natural Science Foundation of China (Grant Nos. 61674140 and 61505003), the Beijing Natural Science Foundation, China (Grant No. 4162063), Beijing Education Commission Project (Grant No. SQKM201610005008), and the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDY-SSW-JSC022).

Corresponding Authors:  Chun-Lai Xue     E-mail:  clxue@semi.ac.cn

Cite this article: 

Xiao-Qian Du(杜小倩), Chong Li(李冲), Ben Li(黎奔), Nan Wang(王楠), Yue Zhao(赵越), Fan Yang(杨帆), Kai Yu(余凯), Lin Zhou(周琳), Xiu-Li Li(李秀丽), Bu-Wen Cheng(成步文), Chun-Lai Xue(薛春来) High-performance waveguide-integrated Ge/Si avalanche photodetector with small contact angle between selectively epitaxial growth Ge and Si layers 2019 Chin. Phys. B 28 064208

[1] Campbell J C 2016 J. Lightwave Technol. 34 278
[2] Humphreys D A and King R J 1985 Electron. Lett. 21 1187
[3] Amiento C A and Groves S H 1983 Appl. Phys. Lett. 43 333
[4] Li Y, Shi Z F, Li X J and Shan C X 2019 Chin. Phys. B 28 017803
[5] Li X, Sun J D, Zhang Z P, Popov V V and Qin H 2018 Chin. Phys. B 27 068506
[6] Shi J, Ma R Q, Duan Z L, Liang M, Chai B Y and Dong J 2017 Chin. Phys. B 26 124214
[7] Wang X X, Chen.L, Chen W, Cui.H.L, Hu Y, Cai P F, Yang R, Hong C Y, Pan D, Ang K W, Yu M B, Fang Q and Lo G Q 2009 Optical Fiber Communication Conference, 2009, March 22-26, 2009, San Diego, USA, p. OMR3
[8] Wu W Z, Cheng B W, Zheng J, Liu Z, Li C B, Zuo Y H and Xue C L 2017 J. Semicond. 38 114003
[9] Li B, Yang X H, Yin W H, Lv Q Q, Cui R and Han Q 2014 J. Semicond. 35 074009
[10] Ahn D, Hong Y C, Liu J F, Giziewicz W, Beals M, Kimerling L C, Michel J, Chen J and Kartner F X 2007 Opt. Express 15 3916
[11] Vivien L, Osmond J, Fedeli J M, Marris-Morini D, Crozat P, Damlencourt J F, Cassan E, Lecunff Y and Laval S 2009 Opt. Express 17 6252
[12] Liao B X, Guo X D, Hu H, Liu N, Chen K, Yang X X and Dai Q 2018 Chin. Phys. B 27 094101
[13] Kang Y M, Liu H D, Morse M, Paniccia M J, Zadka M, Litski S, Sarid G, Pauchard A, Kuo Y H, Chen H W, Zaoui W S, Bowers J E, Beling A, Mcintosh D C, Zheng X G and Campbell J C 2009 Nat. Photon. 3 59
[14] Rouvié A, Carpentier D, Lagay N, Décobert J, Pommereau F and Achouche M 2008 IEEE Photon. Tech. Lett. 20 455
[15] Yin T, Cohen R, Morse M M, Sarid G, Chetrit Y, Rubin D and Paniccia M J 2007 Opt. Express 15 13965
[16] Michel J, Liu J F and Kimerling L C 2010 Nat. Photon. 4 527
[17] Duan N, Liow T Y, Lim A E, Ding L and Lo G Q 2013 Optical Fiber Communication Conference, 2013, March 17-21, 2013, Anaheim, USA, p. OM3K.3
[18] Liow T Y, Duan N, Lim A E, Tu X G, Yu M B and Lo G Q 2014 Optical Fiber Communication Conference, 2014, March 9-13, 2014, San Francisco, USA, p. M2G.6
[19] Chen H, Verheyen P, Heyn P D, Lepage G, Coster J D, Balakrishnan S, Absil P, Yao W, Shen L, Roelkens G and Campenhout J V 2016 Opt. Express 24 4622
[20] Zhu S Y, Ang K W, C Rustagi S, Wang J, Xiong Y Z, Lo G Q and Kwong D L 2009 IEEE Electron Dev. Lett. 30 934
[21] Nicholas J D M, Michael G, Christopher T D, Andrew L S, Andrew T P, Anthony L L, Douglas C T and Paul S D 2017 Opt. Express 25 16130
[22] Nicholas J D M, Christopher T D, Reinhard W B, Andrew L S, Andrew T P, Anthony L L, Douglas C T and Paul S D 2016 Opt. Express 24 019072
[23] Wang X and Liu J 2011 IEEE Photon. Technol. Lett. 23 146
[24] Halbwax M, Nguyen L H, Fossard F, Roux X L, Mathet V, Yam V, Cao D T and Bouchier D 2006 Mater. Sci. Semicond. Process. 9 460
[25] Hartmann J M, Abbadie A, Papon A M, Holliger P, Roll, G, Billon T and Fédéli J M 2004 J. Appl. Phys. 95 5905
[26] Cong H, Xue C L, Liu Z, Li C B, Cheng B W and Wang Q M 2016 Chin. Phys. B 25 058503
[27] Dash W C and Newman R 1955 Phys. Rev. 99 1151
[1] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[2] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[3] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[4] Phase-matched second-harmonic generation in hybrid polymer-LN waveguides
Zijie Wang(王梓杰), Bodong Liu(刘伯东), Chunhua Wang(王春华), and Huakang Yu(虞华康). Chin. Phys. B, 2022, 31(10): 104208.
[5] Extraordinary propagation characteristics of electromagnetic waves in one-dimensional anti-PT-symmetric ring optical waveguide network
Jie-Feng Xu(许杰锋), Xiang-Bo Yang(杨湘波), Hao-Han Chen(陈浩瀚), Zhan-Hong Lin(林展鸿). Chin. Phys. B, 2020, 29(6): 064201.
[6] Ultraviolet irradiation dosimeter based on persistent photoconductivity effect of ZnO
Chao-Jun Wang(王朝骏), Xun Yang(杨珣), Jin-Hao Zang(臧金浩), Yan-Cheng Chen(陈彦成), Chao-Nan Lin(林超男), Zhong-Xia Liu(刘忠侠), Chong-Xin Shan(单崇新). Chin. Phys. B, 2020, 29(5): 058504.
[7] Fullerene-based electrode interlayers for bandgap tunable organometal perovskite metal-semiconductor-metal photodetectors
Wen Luo(罗文), Li-Zhi Yan(闫立志), Rong Liu(刘荣), Tao-Yu Zou(邹涛隅), Hang Zhou(周航). Chin. Phys. B, 2019, 28(4): 047804.
[8] Photodetectors based on small-molecule organic semiconductor crystals
Jing Pan(潘京), Wei Deng(邓巍), Xiuzhen Xu(徐秀真), Tianhao Jiang(姜天昊), Xiujuan Zhang(张秀娟), Jiansheng Jie(揭建胜). Chin. Phys. B, 2019, 28(3): 038102.
[9] Progress in quantum well and quantum cascade infrared photodetectors in SITP
Xiaohao Zhou(周孝好), Ning Li(李宁), Wei Lu(陆卫). Chin. Phys. B, 2019, 28(2): 027801.
[10] Recent progress of infrared photodetectors based on lead chalcogenide colloidal quantum dots
Jinming Hu(胡津铭), Yuansheng Shi(史源盛), Zhenheng Zhang(张珍衡), Ruonan Zhi(智若楠), Shengyi Yang(杨盛谊), Bingsuo Zou(邹炳锁). Chin. Phys. B, 2019, 28(2): 020701.
[11] Thickness-modulated in-plane Bi2O2Se homojunctions for ultrafast high-performance photodetectors
Cheng-Yun Hong(洪成允), Gang-Feng Huang(黄刚锋), Wen-Wen Yao(要文文), Jia-Jun Deng(邓加军), Xiao-Long Liu(刘小龙). Chin. Phys. B, 2019, 28(12): 128502.
[12] Electrical transport and optical properties of Cd3As2 thin films
Yun-Kun Yang(杨运坤), Fa-Xian Xiu(修发贤), Feng-Qiu Wang(王枫秋), Jun Wang(王军), Yi Shi(施毅). Chin. Phys. B, 2019, 28(10): 107502.
[13] Metal halide perovskite photodetectors: Material featuresand device engineering
Ye Wang(王烨), Meng-Lei Gao(高孟磊), Jin-Liang Wu(吴金良), Xing-Wang Zhang(张兴旺). Chin. Phys. B, 2019, 28(1): 018502.
[14] Photodetectors based on two-dimensional materials and organic thin-film heterojunctions
Jiayue Han(韩嘉悦), Jun Wang(王军). Chin. Phys. B, 2019, 28(1): 017103.
[15] Room-temperature infrared photodetectors with hybrid structure based on two-dimensional materials
Tiande Liu(刘天德), Lei Tong(童磊), Xinyu Huang(黄鑫宇), Lei Ye(叶镭). Chin. Phys. B, 2019, 28(1): 017302.
No Suggested Reading articles found!