Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 017103    DOI: 10.1088/1674-1056/28/1/017103
Special Issue: TOPICAL REVIEW — Photodetector: Materials, physics, and applications
TOPICAL REVIEW—Photodetector: materials, physics, and applications Prev   Next  

Photodetectors based on two-dimensional materials and organic thin-film heterojunctions

Jiayue Han(韩嘉悦)1, Jun Wang(王军)1,2
1 School of Optoelectronic Science and Engineering, the University of Electronic Science and Technology of China, Chengdu 610054, China;
2 State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  High-performance photodetectors are expected to open up revolutionary opportunities in many application fields, such as environment monitoring, military, optical communication and biomedical science. Combining two-dimensional materials (which have tunable optical absorption and high carrier mobility) with organic materials (which are abundant with low cost, high flexibility and large-area scalability) to form thin-film heterojunctions, high-responsivity photodetectors could be predicted with fast response speed in a wide spectra region. In this review, we give a comprehensive summary of photodetectors based on two-dimensional materials and organic thin-film heterojunctions, which includes hybrid assisted enhanced devices, single-layer enhanced devices, vertical heterojunction devices and tunable vertical heterojunction devices. We also give a systematic classification and perspectives on the future development of these types of photodetectors.
Keywords:  photodetectors      two-dimensional materials      organic thin film      heterojunction  
Received:  19 September 2018      Revised:  05 November 2018      Accepted manuscript online: 
PACS:  71.20.Rv (Polymers and organic compounds)  
  81.05.ue (Graphene)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Fund: Project supported by National Science Funds for Creative Research Groups of China (Grant No. 61421002).
Corresponding Authors:  Jun Wang     E-mail:  wjun@uestc.edu.cn

Cite this article: 

Jiayue Han(韩嘉悦), Jun Wang(王军) Photodetectors based on two-dimensional materials and organic thin-film heterojunctions 2019 Chin. Phys. B 28 017103

[1] Mueller T, Xia F and Avouris P 2010 Nat. Photon. 4 297
[2] Lu H, Cumming B P and Gu M 2015 Opt. Lett. 40 3647
[3] Miao J, Hu W, Guo N, Lu Z, Liu X, Liao L, Chen P, Jiang T, Wu S, Ho J C, Wang L, Chen X and Lu W 2015 Small 11 936
[4] Miao J, Hu W, Jing Y, Luo W, Liao L, Pan A, Wu S, Cheng J, Chen X and Lu W 2015 Small 11 2392
[5] Echtermeyer T J, Britnell L, Jasnos P K, Lombardo A, Gorbachev R V, Grigorenko A N, Geim A K, Ferrari A C and Novoselov K S 2011 Nat. Commun. 2 458
[6] Kawasaki T, Sugawara K, Dobroiu A, Eto T, Kurita Y, Kojima K, Yabe Y, Sugiyama H, Watanabe T, Suemitsu T, Ryzhii V, Iwatsuki K, Fukada Y, Kani J, Terada J, Yoshimoto N, Kawahara K, Ago H and Otsuji T 2015 Solid-State Electron. 103 216
[7] Vicarelli L, Vitiello M S, Coquillat D, Lombardo A, Ferrari A C, Knap W, Polini M, Pellegrini V and Tredicucci A 2012 Nat. Mater. 11 865
[8] Marczewski J, Knap W, Tomaszewski D, Zaborowski M and Zagrajek P 2015 J. Appl. Phys. 118 104502
[9] Furchi M, Urich A, Pospischil A, Lilley G, Unterrainer K, Detz H, Klang P, Andrews A M, Schrenk W, Strasser G and Mueller T 2012 Nano Lett. 12 2773
[10] Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, Arquer F P G, Gatti F and Koppens F H 2012 Nat. Nanotechnol. 7 363
[11] Kufer D, Nikitskiy I, Lasanta T, Navickaite G, Koppens F H L and Konstantatos G 2015 Adv. Mater. 27 176
[12] Sun Z, liu Z, Li J, Tai G, Lau S and Yan F 2012 Adv. Mater. 24 5878
[13] Fang H and Hu W 2017 Sci. Chin.-Phys. Mech. & Astron. 60 027031
[14] Wang P, Liu S, Luo W, Fang H, Gong F, Guo N, Chen Z, Zou J, Huang Y, Zhou X, Wang J, Chen X, Lu W, Xiu F and Hu W 2017 Adv. Mater. 29 1604439
[15] Wang Q H and Hersam M C 2009 Nat. Chem. 1 206
[16] Long M, Wang P, Fang H and Hu W 2018 Adv. Funct. Mater. 2018 1803807
[17] Wang J and Hu W 2017 Chin. Phys. B 26 037106
[18] Gong X, Tong M, Xia Y, Cai W, Moon J S, Cao Y, Yu G, Shieh C L, Nilsson B and Heeger A J 2009 Science 325 1665
[19] Vuuren R D J, Armin A, Pandey A K, Burn P L and Meredith P 2016 Adv. Mater. 28 4766
[20] Baeg K J, Binda M, Natali D, Caironi M and Noh Y Y 2013 Adv. Mater. 25 4267
[21] Wang H and Kim D H 2017 Chem. Soc. Rev. 46 5204
[22] Arquer F P G d, Armin A, Meredith P and Sargent E 2017 Nat. Rev. Mater. 2 16100
[23] Chen L, Deng J X, Kong L, Cui M, Chen R G and Zhang Z J 2015 Chin. Phys. B 24 047801
[24] Yang D Z, Sun H D, Chen J S and Ma D G 2012 Chin. Phys. Lett. 29 114216
[25] Hao Z H, Hu Z Y, Zhang J J, Hao Q Y and Zhao Y 2011 Acta Phys. Sin. 60 117106 (in Chinese)
[26] Li R H, Meng W M, Peng Y Q, Ma C Z, Wang R S, Xie H W and Wang Y 2010 Chin. Phys. Lett. 27 088401
[27] Liu X D, Zhao S L, Xu Z, Zhang F J, Zhang T H, Gong W, Yan G, Kong C, Wang Y S and Xu X R 2011 Chin. Phys. B 20 068801
[28] Guo Y, Liu C, Tanaka H and Nakamura E 2015 J. Phys. Chem. Lett. 6 535
[29] Liu X, Yu D, Cao F, Li X, Ji J, Chen J, Song X and Zeng H 2017 Small 13 1700364
[30] Dong H, Zhu H, Meng Q, Gong X and Hu W 2012 Chem. Soc. Rev. 41 1754
[31] Dou L, Liu Y, Hong Z, Li G and Yang Y 2015 Chem. Rev. 115 12633
[32] Mishra A and Bäuerle P 2004 Angew. Chem. 43 2020
[33] Chen X, Liu X, Wu B, Nan H, Guo H, Ni Z, Wang F, Wang X, Shi Y and Wang X 2017 Nano Lett. 17 6391
[34] Hiramoto M, Imahigashi T and Yohoyama M 1994 Appl. Phys. Lett. 64 187
[35] Nakayama K I, Hiramoto M and Yokoyama M 1998 J. Appl. Phys. 84 6154
[36] Hiramoto M, Kawase S and Yokoyama M 1996 Jpn. J. Appl. Phys. 35 349
[37] Katsume T, Hiramoto M and Yohoyama M 1996 Appl. Phys. Lett. 69 3722
[38] Bao W, Cai X, Kim D, Sridhara K and Fuhrer M S 2013 Appl. Phys. Lett. 102 042104
[39] Yao Y, Liang Y, Shrotriya V, Xiao S, Yu L and Yang Y 2007 Adv. Mater. 19 3979
[40] Wang X, Li H, Su Z, Fang F, Zhang G, Wang J, Chu B, Fang X, Wei Z, Li B and Li W 2014 Org. Electron. 15 2367
[41] Zhang T, Chu B, Li W, Su Z, Peng Q M, Zhao B, Luo Y, Jin F, Yan X, Gao Y, Wu H, Zhang F, Fan D and Wang J 2015 ACS Appl. Mater. Interfaces 7 2529
[42] Zimmerman J D, Diev V V, Hanson K, Lunt R R, Yu E K, Thompson M E and Forrest S R 2010 Adv. Mater. 22 2780
[43] Qi J, Ni L, Yang D, Zhou X, Qiao W, Li M, Ma D and Wang Z Y 2014 J. Mater. Chem. C 2 2431
[44] Peumans P, Bulovic V and Forrest S R 2000 Appl. Phys. Lett. 76 3855
[45] Lee J, Jadhav P and Baldo M A 2009 Appl. Phys. Lett. 95 192
[46] Yu G, Gao J, Hummelen J C, Wudl F and Heeger A J 1995 Science 270 1789
[47] Halls J J M, Walsh C A, Greenham N C, Marseglia E A, Friend R H, Moratti S C and Holmes A B 1995 Nature 376 498
[48] Spanggaard H and Krebs F C 2004 Sol. Energy Mater. Sol. Cells 83 125
[49] Günes S, Neugebauer H and Sariciftci N S 2007 Chem. Rev. 107 1324
[50] Cheng Y J, Yang S H and Hsu C S 2009 Chem. Rev. 109 5868
[51] Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K and Yang Y 200 5 Nat. Mater. 4 864
[52] Chen H Y, Hou J, Zhang S, Liang Y, Y ang G, Yang Y, Yu L, Wu Y and Li G 2009 Nat. Photon. 3 649
[53] Huo L, Hou J, Zhang S, Chen H Y and Yang Y 2010 Angew. Chem. 122 1542 2010 Angew. Chem. Int. Ed. 49 1500
[54] Liang Y, Xu Z, Xia J, Tsai S T, Wu Y, Li G, Ray C and Yu L 2010 Adv. Mater. 22 E135
[55] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[56] Dong R, Fan Y, Chae J, Dai J, Xiao Z, Dong Q, Yuan Y, Centrone A, Zeng X C and Huang J 2015 Adv. Mater. 27 1912
[57] Hu X, Zhang X, Liang L, Bao J, Li S, Yang W and Xie Y 2014 Adv. Funct. Mater. 24 7373
[58] Dou L, Yang Y, You J, Hong Z, Chang W H, Li G and Yang Y 2014 Nat. Commun. 5 5404
[59] Gasparini N, Gregori A, Salvador M, Biele M, Wadsworth A, Tedde S, Baran D, McCulloch I and Brabec C J Adv. Mater. Technol. 3 1800104
[60] Wang X, Wang H, Zhou D, Jin H and Yu J 2018 Mater. Lett. 230 289
[61] Zhan X, Tan Z, Domercq B, An Z, Zhang X, Barlow S, Li Y, Zhu D, Kippelen B and Marder S 2007 J. Am. Chem. Soc. 129 7246
[62] Few S, Frost J M, Kirkpatrick J and Nelson J 2014 J. Phys. Chem. C 118 8253
[63] Guo X, Facchetti A and Marks T J 2014 Chem. Rev. 114 8943
[64] Jiang W, Li Y and Wang Z 2014 Acc. Chem. Res. 47 3135
[65] Nielsen C B, Holliday S, Chen H Y, Cryer S J and McCulloch I 2015 Acc. Chem. Res. 48 2803
[66] Kang H, Lee W, Oh J, Kim T, Lee C and Kim B J 2016 Acc. Chem. Res. 49 2424
[67] Diao Y, Zhou Y, Kurosawa T, Shaw Leo, Wang C, Park S, Guo Y, Reinspach J A, Gu K, Gu X, Tee B C K, Pang C, Yan H, Zhao D, Toney M F, Mannsfeld S C B and Bao Z 2015 Nat. Commun. 6 7955
[68] Liu Z, Wu Y, Zhang Q and Gao X 2016 J. Mater. Chem. A 4 17604
[69] Fernandez L F, Zink L N and Sastre Sa A 2016 J. Mater. Chem. A 4 9336
[70] Buscema M, Isl, J O, Groenendijk D J, Blanter S I, Steele G A, Zant H S and Castellanos-Gomez A 2015 Chem. Soc. Rev. 44 3691
[71] Wang J, Fang H, Wang X, Chen X, Lu W and Hu W 2017 Small 13 1700894
[72] Fang H and Hu W 2017 Adv. Sci. 4 1700323
[73] Liu X, Luo X, Nan H, Guo H, Wang P, Zhang L, Zhou M, Yang Z, Shi Y, Hu W, Ni Z, Qiu T, Yu Z, Xu J B and Wang X 2016 Adv. Mater. 28 5200
[74] Kitazawa N, Watanabe Y and Nakamura Y 2002 J. Mater. Sci. 37 3585
[75] Burschka J, Pellet N, Moon S J, Humphry B R, Gao P, Nazeeruddin M K and Grätzel M 2013 Nature 499 316
[76] Lee Y, Kwon J, Hwang E, Ra C H, Yoo W J, Ahn J H, Park J H and Cho J H 2015 Adv. Mater. 27 41
[77] Saran R and Curry R J 2016 Nat. Photon. 10 81
[78] Pan R, Li H, Wang J, Jin X, Li Q, Wu Z, Gou J, Jiang Y and Song Y 2018 Part. Part. Syst. Charact. 35 1700304
[79] Chang P H, Tsai Y C, Shen S W, Liu S Y, Huang K Y, Li C S, Chang H P and Wu C I 2017 ACS Photon. 4 2335
[80] Chen S Y, Lu Y Y, Shih F Y, Ho P H, Chen Y F, Chen C W, Chen Y T and Wang W H 2013 Carbon 63 23
[81] Jones G F, Pinto R M, Sanctis A D, Nagareddy V K, Wright C D, Alves H, Craciun M F and Russo S 2017 Adv. Mater. 29 1702993
[82] Wang X, Wang P, Wang J, Hu W, Zhou X, Guo N, Huang H, Sun S, Shen H, Lin T, Tang M, Liao L, Jiang A, Sun J, Meng X, Chen X, Lu W and Chu J 2015 Adv. Mater. 27 6575
[83] Tan W C, Shih W H and Chen Y F 2014 Adv. Funct. Mater. 24 6818
[84] Yu S H, Lee Y, Jang S K, Kang J, Jeon J, Lee C, Lee J Y, Kim H, Hwang E, Lee S and Cho J H 2014 ACS Nano 8 8285
[85] Xie C and Yan F 2017 ACS Appl. Mater. Interfaces 9 1569
[86] Peng Z Y, Xu J L, Zhang J Y, Gao X and Wang S D 2018 Adv. Mater. Interfaces 1800505
[87] Qin L, Wu L, Kattel B, Li C, Zhang Y, Hou Y, Wu J and Chan W L 2017 Adv. Funct. Mater. 27 47
[88] Han J, Wang J, Yang M, Kong X, Chen X, Huang Z, Guo H, Gou J, Tao S, Liu Z, Wu Z, Jiang Y and Wang X 2018 Adv. Mater.
[89] Taniyasu Y, Kasu M and Makimoto T 2006 Nature 441 325
[90] Cho A Y and Arthur J R 1975 Prog. Solid State Chem. 10 157
[91] Geim A K and Grigorieva I V 2013 Nature 499 419
[92] Hong X, Kim J, Shi S F, Zhang Y, Jin C, Sun Y, Tongay S, Wu J, Zhang Y and Wang F 2014 Nat. Nanotechnol. 9 682
[93] Britnell L, Ribeiro R M, Eckmann A, Jalil R, Belle B D, Mishchenko A, Kim Y J, Gorbachev R V, Georgiou T, Morozov S V, Grigorenko A N, Geim A K, Casiraghi C, Castro Neto A H and Novoselov K S 2013 Science 340 1311
[94] Zhu H F, Li T, Zhang Y J, Dong H L, Song J S D, Zhao H P, Wei Z M, Xu W, Hu W P and Bo Z S 2010 Adv. Mater. 22 1645
[95] Cheng R, Li D, Zhou H, Wang C, Yin A, Jiang S, Liu Y, Chen Y, Huang Y and Duan X 2014 Nano Lett. 14 5590
[96] Furchi M M, Pospischil A, Libisch F, Burgdörfer J and Mueller T 2014 Nano Lett. 14 4785
[97] Deng Y, Luo Z, Conrad N J, Liu H, Gong Y, Namjmaei S, Ajayan P, Lou J, Xu X and Ye P D 2014 ACS Nano. 8 8292
[98] Jariwala D, Sangwan V K, Wu C C, Prabhumirashi P L, Geier M L, Marks T J, Lauhon L J and Hersam M C 2013 Proc. Natl. Acad. Sci. U. S. A 110 18076
[99] Liu Y, Wang F, Wang X, Wang X, Flahaut E, Liu X, Li Y, Wang X, Xu Y, Shi Y, Zhang R 2015 Nat. Commun. 6 9589
[100] Ye Y, Ye Z, Gharghi M, Zhu H, Zhao M, Wang Y, Yin X and Zhang X 2014 Appl. Phys. Lett. 104 193508
[101] Yang H, Heo J, Park S, Song H J, Seo D H, Byun K E, Kim P, Yoo I, Chung H J and Kim K 2012 Science 336 1140
[102] Vélez S, Ciudad D, Isl, J, Buscema M, Txoperena O, Parui S, Steele G A, Casanova F, Zant H S J, Castellanos G A and Hueso L E 2015 Nanoscale 7 15442
[103] Liu F, Chow W L, He X, Hu P, Zheng S, Wang X, Zhou J, Fu Q, Fu W, Yu P, Zeng Q, Fan H J, Tay B K, Kloc C and Liu Z 2015 Adv. Funct. Mater. 25 5865
[104] Jariwala D, Howell S L, Chen K S, Kang J, Sangwan V K, Filippone S A, Turrisi R, Marks T J, Lauhon L J and Hersam M C 2016 Nano Lett. 16 497
[105] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[106] Lembke D, Bertolazzi S and Kis A 2015 Acc. Chem. Res. 48 100
[107] Huang Y, Zhuge F, Hou J, Lv Liang, Luo Peng, Zhou Nan, Gan L and Zhai T 2018 ACS Nano 12 4062
[108] Wang J, Yao Q, Huang C W, Zou X, Liao L, Chen S, Fan Z, Zhang K, Wu W, Xiao X, Jiang C and Wu W W 2016 Adv. Mater. 28 8302
[109] Velusamy D B, Haque M A, Parida M R, Zhang F, Tom W, Mohammed O F and Alshareef H N 2017 Adv. Funct. Mater. 27 1605554
[110] Haynes C L and Duyne R P V 2001 J. Phys. Chem. B 105 5599
[111] Zhang J, Li Y, Zhang X and Yang B 2010 Adv. Mater. 22 4249
[112] Chen Z, Li X, Wang J, Tao L, Long M, Liang S J, Ang L K, Shu C, Tsang H K and Xu J B 2017 ACS Nano 11 430
[113] Petoukhoff C E, Krishna M B M, Voiry D, Bozkurt I, Deckoff-Jones S, Chhowalla M, O'Carroll D M and Dani K M 2016 ACS Nano 10 9899
[114] Kim J S, Kim B J, Choi Y J, Lee M H, Kang M S and Cho J H 2016 Adv. Mater. 28 4803
[115] Kim J S, Choi Y J, Woo H J, Yang J, Song Y J, Kang M S and Cho J H 2017 Adv. Funct. Mater. 27 1704475
[116] Liu Z, Parvez K, Li R, Dong R, Feng X and Müllen K 2015 Adv. Mater. 27 669
[117] Pang S, Yang S, Feng X and Müllen K 2012 Adv. Mater. 24 1566
[118] Wang X, Song W, Liu B, Chen G, Chen D, Zhou C and Shen G 2013 Adv. Funct. Mater. 23 1202
[1] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[2] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[3] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[4] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[5] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[6] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[7] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[8] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[9] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[10] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[11] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[12] Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors
Jianan Wei(魏佳男), Yang Li(李洋), Wenlong Liao(廖文龙), Fang Liu(刘方), Yonghong Li(李永宏), Jiancheng Liu(刘建成), Chaohui He(贺朝会), and Gang Guo(郭刚). Chin. Phys. B, 2022, 31(8): 086106.
[13] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[14] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[15] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
No Suggested Reading articles found!