Special Issue:
TOPICAL REVIEW — A celebration of the 100th birthday of Kun Huang
|
TOPICAL REVIEW—A celebration of the 100th birthday of Kun Huang |
Prev
Next
|
|
|
Electrical transport and optical properties of Cd3As2 thin films |
Yun-Kun Yang(杨运坤)1,2, Fa-Xian Xiu(修发贤)1,2, Feng-Qiu Wang(王枫秋)1,3, Jun Wang(王军)4,5, Yi Shi(施毅)1,3,6 |
1 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China; 2 State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China; 3 School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; 4 School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China; 5 State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China; 6 National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China |
|
|
Abstract Cd3As2, as a three-dimensional (3D) topological Dirac semimetal, has attracted wide attention due to its unique physical properties originating from the 3D massless Dirac fermions. While many efforts have been devoted to the exploration of novel physical phenomena such as chiral anomaly and phase transitions by using bulk crystals, the development of high-quality and large-scale thin films becomes necessary for practical electronic and optical applications. Here, we report our recent progress in developing single-crystalline thin films with improved quality and their optical devices including Cd3As2-based heterojunctions and ultrafast optical switches. We find that a post-annealing process can significantly enhance the crystallinity of Cd3As2 in both intrinsic and Zn-doped thin films. With excellent characteristics of high mobility and linear band dispersion, Cd3As2 exhibits a good optical response in the visible-to-mid-infrared range due to an advantageous optical absorption, which is reminiscent of 3D graphene. It also behaves as an excellent saturable absorber in the mid-infrared regime. Through the delicate doping process in this material system, it may further open up the long-sought parameter space crucial for the development of compact and high-performance mid-infrared ultrafast sources.
|
Received: 17 July 2019
Revised: 08 August 2019
Accepted manuscript online:
|
PACS:
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
75.70.Tj
|
(Spin-orbit effects)
|
|
73.43.-f
|
(Quantum Hall effects)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0303302 and 2018YFA0305601) and the National Natural Science Foundation of China (Grant Nos. 61322407, 11474058, 61674040, and 11874116). |
Corresponding Authors:
Yi Shi
E-mail: yshi@nju.edu.cn
|
Cite this article:
Yun-Kun Yang(杨运坤), Fa-Xian Xiu(修发贤), Feng-Qiu Wang(王枫秋), Jun Wang(王军), Yi Shi(施毅) Electrical transport and optical properties of Cd3As2 thin films 2019 Chin. Phys. B 28 107502
|
[37] |
Zhang C, Lu H Z, Shen S Q, Chen Y P and Xiu F X 2018 Sci. Bull. 63 580
|
[1] |
Peisl H, Spalt H and Waidelich W 1967 Phys. Stat. Solidi 23 K75
|
[38] |
Cheng P H, Zhang C, Liu Y W, Yuan X, Song F Q, Sun Q Q, Zhou P, Zhang D W and Xiu F X 2016 New. J. Phys. 18 083003
|
[2] |
Huang K 1951 Nature 167 779
|
[39] |
Yang M, Wang J, Han J Y, Ling J W, Ji C H, Kong X, Liu X C, Huang Z H, Gou J, Liu Z J, Xiu F X and Jiang Y D 2018 ACS Photon. 5 3438
|
[3] |
Henry C H and Hopfield J J 1965 Phys. Rev. Lett. 15 964
|
[40] |
Zhu C H, Wang F Q, Meng Y F, Yuan X, Xiu F X, Luo H Y, Wang Y Z, Li J F, Lv X J, He L, Xu Y B, Liu J F, Zhang C, Shi Y, Zhang R and Zhu S N 2017 Nat. Commun. 8 14111
|
[41] |
Fernández-MerinoL M J, Guardia L, Paredes J I, Villar-Rodil S, Solís-Fernández P, Martínez-Alonso A and Tascón J M D 2010 J. Phys. Chem. C 114 6426
|
[4] |
Huang K and Rhys A 1950 Proc. Roy. Soc. (London) A204 406
|
[42] |
Wang Q S, Li C Z, Ge S F, Li J G, Lu W, Lai J, Liu X F, Ma J C, Yu D P, Liao Z M and Sun D 2017 Nano Lett. 17 834
|
[5] |
Born M and Huang K 1954 Theory of Crystal Lattice Dynamics (Oxford: Oxford University Press)
|
[6] |
Huang K and Zhu B F 1988 Phys. Rev. B 38 2183
|
[43] |
Keller U 2003 Nature 424 831
|
[7] |
Huang K and Zhu B F 1988 Phys. Rev. B 38 13377
|
[44] |
Keller U, Miller D A B, Boyd G D, Chiu T H, Ferguson J F and Asom M T 1992 Opt. Lett. 17 505
|
[8] |
Pioneer of Phonon Physics: Kun Huang, https://pyyuwp.wordpress.com/
|
[45] |
Keller U, Weingarten K J, Karter F X, Kopf D, Braun B, Jung I D, Fluck R, Honniger C, Matuschek N and J Aus der Au 1996 IEEE J. Sel. Top. Quantum Electron. 2 435
|
[9] |
Tsen K T, Wald K R, Ruf T, Yu P Y and Morkoç H 1991 Phys. Rev. Lett. 67 2557
|
[46] |
Chen Y, Zhao C J, Chen S Q, Du J, Tang P H, Jiang G B, Zhang H, Wen S C and Tang D Y 2014 IEEE J. Sel. Top. Quantum Electron. 20 0900508
|
[10] |
Heitz R, Mukhametzhanov I, Stier O, Madhukar A and Bimberg D 1999 Phys. Rev. Lett. 83 4654
|
[47] |
Qin Z P, Xie G Q, Zhao C J, Wen S C, Yuan P and Qian L J 2016 Opt. Lett. 41 56
|
[11] |
Shields A J, Chamberlain M P, Cardona M and Eberl K 1995 Phys. Rev. B 51 17728
|
[48] |
Zhang Y Z, Liu T, Meng B, Li X H, Liang G Z, Hu X N, Hu X N and Wang Q J 2013 Nat. Commun. 4 1811
|
[12] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[49] |
Zhang C, Narayan A, Lu S H, Zhang J L, Zhang H Q, Ni Z L, Yuan X, Liu Y W, Park J H, Zhang E, Wang W Y, Liu S S, Cheng L, Pi L, Sheng Z G, Sanvito S and Xiu F X 2017 Nat. Commun. 8 1272
|
[13] |
Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
|
[14] |
Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, Büchner B and Cava R J 2014 Phys. Rev. Lett. 113 027603
|
[50] |
Uchida M, Nakazawa Y, Nishihaya S, Akiba K, Kriener M, Kozuka Y, Miyake A, Taguchi Y, Tokunaga M, Nagaosa N, Tokura Y and Kawasaki M 2017 Nat. Commun. 8 2274
|
[15] |
Neupane M, Xu S Y, Sankar R, Alidoust N, Bian G, Liu C, Belopolski I, Chang T R, Jeng H T, Lin H, Bansil A, Chou F and Hasan M Z 2014 Nat. Commun. 5 3786
|
[51] |
Timo Schumann, Luca Galletti, Kealhofer A, Honggyu Kim, Manik Goyal and Susanne Stemmer 2018 Phys. Rev. Lett. 120 016801
|
[16] |
Liu Z K, Jiang J, Zhou B, Wang Z J, Zhang Y, Weng H M, Prabhakaran D, Mo S K, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen Z X, Feng D L, Hussain Z and Chen Y L 2014 Nat. Mater. 13 677
|
[52] |
Zhang C, Zhang Y, Yuan X, Lu S H, Zhang J L, Narayan A, Liu Y W, Zhang H Q, Ni Z L, Liu R, Choi E S, Suslov A, Sanvito S, Pi L, Lu H Z, Potter A C and Xiu F X 2019 Nature 565 331
|
[17] |
Yi H, Wang Z, Chen C, Shi Y, Feng Y, Liang A, Xie Z, He S, He J, Peng Y, Liu X, Liu Y, Zhao L, Liu G, Dong X, Zhang J, Nakatake M, Arita M, Shimada K, Namatame H, Taniguchi M, Xu Z, Chen C, Dai X, Fang Z and Zhou X J 2015 Sci. Rep. 4 6106
|
[53] |
Liu Y W, Yuan X, Zhang C, Jin Z, Narayan A, Luo C, Chen Z G, Yang L, Zou J, Wu X, Sanvito S, Xia Z C, Li L, Wang Z and Xiu F X 2016 Nat. Commun. 7 12516
|
[18] |
Jeon S, Zhou B B, Gyenis A, Feldman B E, Kimchi I, Potter A C, Gibson Q D, Cava R J, Vishwanath A and Yazdani A 2014 Nat. Mater. 13 851
|
[54] |
Zhang C L, Tong B B, Yuan Z J, Lin Z Q, Wang J F, Zhang J L, Xi C Y, Wang Z, Jia S and Zhang C 2016 Phys. Rev. B 94 205120
|
[19] |
Liang T, Gibson Q, Ali M N, Liu M, Cava R J and Ong N P 2015 Nat. Mater. 14 280
|
[55] |
Yang M, Wang J, Yang Y K, Zhang Q, Ji C H, Wu G R, Su Y J, Gou Jun, Wu Z M, Yuan K J, Xiu F X and Jiang Y D 2019 J. Phys. Chem. Lett. 10 3914
|
[20] |
Feng J, Pang Y, Wu D, Wang Z, Weng H, Li J, Dai X, Fang Z, Shi Y and Lu L 2015 Phys. Rev. B 92 081306
|
[56] |
Zhu C H, Yuan X, Xiu F X, Zhang C, Xu Y B, Zhang R, Shi Y and Wang F Q 2017 Appl. Phys. Lett. 111 091101
|
[21] |
He L P, Hong X C, Dong J K, Pan J, Zhang Z, Zhang J and Li S Y 2014 Phys. Rev. Lett. 113 246402
|
[57] |
Meng Y F, Zhu C H, Li Y, Yuan X, Xiu F X, Shi Y, Xu Y B and Wang F Q 2018 Opt. Lett. 43 1503
|
[22] |
Li C Z, Wang L X, Liu H, Wang J, Liao Z M and Yu D P 2015 Nat. Commun. 6 10137
|
[58] |
Sun Y, Meng Y F, Jiang H Z, Qin S C, Yang Y K, Xiu F X, Shi Y, Zhu S N and Wang F Q 2019 Opt. Lett. 44 582
|
[23] |
Li H, He H, Lu H Z, Zhang H, Liu H, Ma R, Fan Z, Shen S Q and Wang J 2016 Nat. Commun. 7 10301
|
[24] |
Dubowski J J and Williams D F 1984 Appl. Phys. Lett. 44 339
|
[25] |
Schönherr P and Hesjedal T 2015 Appl. Phys. Lett. 106 013115
|
[26] |
Lovett D R 1972 J. Mater. Sci. 7 388
|
[27] |
Din M and Gould R D 2006 Appl. Surf. Sci. 252 5508
|
[28] |
Liu Y, Zhang C, Yuan X, Lei T, Wang C, Di D, Narayan A, He L, Picozzi S, Sanvito S, Che R and Xiu F 2015 NPG Asia Mater. 7 e221
|
[29] |
Zhao B, Cheng P, Pan H, Zhang S, Wang B, Wang G, Xiu F and Song F 2016 Sci. Rep. 6 22377
|
[30] |
Zhang E, Liu Y, Wang W, Zhang C, Zhou P, Chen Z G, Zou J and Xiu F 2015 ACS Nano 9 8843
|
[31] |
Portal J C, Moaty M A, Żdanowicz W and Żdanowicz L 1981 Thin Solid Films 76 391
|
[32] |
Żdanowicz W, Żdanowicz L, Portal J C and Askenazy S 1979 Thin Solid Films 61 41
|
[33] |
Żdanowicz L, Żdanowicz W and Pocztowski G 1975 Thin Solid Films 28 345
|
[34] |
Wang L X, Li C Z, Yu D P and Liao Z M 2016 Nat. Commun. 7 10769
|
[35] |
Wang Z, Weng H, Wu Q, Dai X and Fang Z 2013 Phys. Rev. B 88 125427
|
[36] |
Potter A C, Kimchi I and Vishwanath A 2014 Nat. Commun. 5 5161
|
[37] |
Zhang C, Lu H Z, Shen S Q, Chen Y P and Xiu F X 2018 Sci. Bull. 63 580
|
[38] |
Cheng P H, Zhang C, Liu Y W, Yuan X, Song F Q, Sun Q Q, Zhou P, Zhang D W and Xiu F X 2016 New. J. Phys. 18 083003
|
[39] |
Yang M, Wang J, Han J Y, Ling J W, Ji C H, Kong X, Liu X C, Huang Z H, Gou J, Liu Z J, Xiu F X and Jiang Y D 2018 ACS Photon. 5 3438
|
[40] |
Zhu C H, Wang F Q, Meng Y F, Yuan X, Xiu F X, Luo H Y, Wang Y Z, Li J F, Lv X J, He L, Xu Y B, Liu J F, Zhang C, Shi Y, Zhang R and Zhu S N 2017 Nat. Commun. 8 14111
|
[41] |
Fernández-MerinoL M J, Guardia L, Paredes J I, Villar-Rodil S, Solís-Fernández P, Martínez-Alonso A and Tascón J M D 2010 J. Phys. Chem. C 114 6426
|
[42] |
Wang Q S, Li C Z, Ge S F, Li J G, Lu W, Lai J, Liu X F, Ma J C, Yu D P, Liao Z M and Sun D 2017 Nano Lett. 17 834
|
[43] |
Keller U 2003 Nature 424 831
|
[44] |
Keller U, Miller D A B, Boyd G D, Chiu T H, Ferguson J F and Asom M T 1992 Opt. Lett. 17 505
|
[45] |
Keller U, Weingarten K J, Karter F X, Kopf D, Braun B, Jung I D, Fluck R, Honniger C, Matuschek N and J Aus der Au 1996 IEEE J. Sel. Top. Quantum Electron. 2 435
|
[46] |
Chen Y, Zhao C J, Chen S Q, Du J, Tang P H, Jiang G B, Zhang H, Wen S C and Tang D Y 2014 IEEE J. Sel. Top. Quantum Electron. 20 0900508
|
[47] |
Qin Z P, Xie G Q, Zhao C J, Wen S C, Yuan P and Qian L J 2016 Opt. Lett. 41 56
|
[48] |
Zhang Y Z, Liu T, Meng B, Li X H, Liang G Z, Hu X N, Hu X N and Wang Q J 2013 Nat. Commun. 4 1811
|
[49] |
Zhang C, Narayan A, Lu S H, Zhang J L, Zhang H Q, Ni Z L, Yuan X, Liu Y W, Park J H, Zhang E, Wang W Y, Liu S S, Cheng L, Pi L, Sheng Z G, Sanvito S and Xiu F X 2017 Nat. Commun. 8 1272
|
[50] |
Uchida M, Nakazawa Y, Nishihaya S, Akiba K, Kriener M, Kozuka Y, Miyake A, Taguchi Y, Tokunaga M, Nagaosa N, Tokura Y and Kawasaki M 2017 Nat. Commun. 8 2274
|
[51] |
Timo Schumann, Luca Galletti, Kealhofer A, Honggyu Kim, Manik Goyal and Susanne Stemmer 2018 Phys. Rev. Lett. 120 016801
|
[52] |
Zhang C, Zhang Y, Yuan X, Lu S H, Zhang J L, Narayan A, Liu Y W, Zhang H Q, Ni Z L, Liu R, Choi E S, Suslov A, Sanvito S, Pi L, Lu H Z, Potter A C and Xiu F X 2019 Nature 565 331
|
[53] |
Liu Y W, Yuan X, Zhang C, Jin Z, Narayan A, Luo C, Chen Z G, Yang L, Zou J, Wu X, Sanvito S, Xia Z C, Li L, Wang Z and Xiu F X 2016 Nat. Commun. 7 12516
|
[54] |
Zhang C L, Tong B B, Yuan Z J, Lin Z Q, Wang J F, Zhang J L, Xi C Y, Wang Z, Jia S and Zhang C 2016 Phys. Rev. B 94 205120
|
[55] |
Yang M, Wang J, Yang Y K, Zhang Q, Ji C H, Wu G R, Su Y J, Gou Jun, Wu Z M, Yuan K J, Xiu F X and Jiang Y D 2019 J. Phys. Chem. Lett. 10 3914
|
[56] |
Zhu C H, Yuan X, Xiu F X, Zhang C, Xu Y B, Zhang R, Shi Y and Wang F Q 2017 Appl. Phys. Lett. 111 091101
|
[57] |
Meng Y F, Zhu C H, Li Y, Yuan X, Xiu F X, Shi Y, Xu Y B and Wang F Q 2018 Opt. Lett. 43 1503
|
[58] |
Sun Y, Meng Y F, Jiang H Z, Qin S C, Yang Y K, Xiu F X, Shi Y, Zhu S N and Wang F Q 2019 Opt. Lett. 44 582
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|