Special Issue:
TOPICAL REVIEW — Photodetector: Materials, physics, and applications
|
SPECIAL TOPIC—Recent advances in thermoelectric materials and devices |
Prev
Next
|
|
|
Photodetectors based on small-molecule organic semiconductor crystals |
Jing Pan(潘京), Wei Deng(邓巍), Xiuzhen Xu(徐秀真), Tianhao Jiang(姜天昊), Xiujuan Zhang(张秀娟), Jiansheng Jie(揭建胜) |
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices,Soochow University, Suzhou 215123, China |
|
|
Abstract Small-molecule organic semiconductor crystals (SMOSCs) combine broadband light absorption (ultraviolet-visible-near infrared) with long exciton diffusion length and high charge carrier mobility. Therefore, they are promising candidates for realizing high-performance photodetectors. Here, after a brief resume of photodetector performance parameters and operation mechanisms, we review the recent advancements in application of SMOSCs as photodetectors, including photoconductors, phototransistors, and photodiodes. More importantly, the SMOSC-based photodetectors are further categorized according to their detection regions that cover a wide range from ultraviolet to near infrared. Finally, challenges and outlooks of SMOSC-based photodetectors are provided.
|
Received: 12 October 2018
Revised: 26 November 2018
Accepted manuscript online:
|
PACS:
|
81.05.Fb
|
(Organic semiconductors)
|
|
81.10.-h
|
(Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
85.60.Dw
|
(Photodiodes; phototransistors; photoresistors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51672180, 51622306, and 21673151), Collaborative Innovation Center of Suzhou Nano Science & Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the 111 Project, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices. |
Corresponding Authors:
Xiujuan Zhang, Jiansheng Jie
E-mail: xjzhang@suda.edu.cn;jsjie@suda.edu.cn
|
Cite this article:
Jing Pan(潘京), Wei Deng(邓巍), Xiuzhen Xu(徐秀真), Tianhao Jiang(姜天昊), Xiujuan Zhang(张秀娟), Jiansheng Jie(揭建胜) Photodetectors based on small-molecule organic semiconductor crystals 2019 Chin. Phys. B 28 038102
|
[1] |
Zhang X J, Jie J S, Deng W, Shang Q X, Wang J C, Wang H, Chen X F and Zhang X H 2016 Adv. Mater. 28 2475
|
[2] |
Reese C and Bao Z N 2007 Mater. Today 10 20
|
[3] |
Deng W, Zhang X J, Dong H L, Jie J S, Xu X Z, Liu J, He L, Xu L, Hu W P and Zhang X H 2018 Mater. Today in press
|
[4] |
Deng W, Zhang X J, Wang L, Wang J C, Shang Q X, Zhang X H, Huang L M and Jie J S 2015 Adv. Mater. 27 7305
|
[5] |
Baeg K J, Binda M, Natali D, Caironi M and Noh Y Y 2013 Adv. Mater. 25 4267
|
[6] |
Dong H L, Zhu H F, Meng Q, Gong X and Hu W P 2012 Chem. Soc. Rev. 41 1754
|
[7] |
Pierre1 A and Arias A C 2016 Flex. Print. Electron. 1 043001
|
[8] |
Wang H L, Liu H T, Zhao Q, Ni Z J, Zou Y, Yang J, Wang L F, Sun Y Q, Guo Y L, Hu W P and Liu Y Q 2017 Adv. Mater. 29 1701772
|
[9] |
Schwab A D, Smith D E, Bond-Watts B, Johnston D E, Hone J, Johnson A T, de Paula J C and Smith W F 2004 Nano Lett. 4 1261
|
[10] |
Deng W, Zhang X J, Zhang X H, Guo J H and Jie J S 2017 Adv. Mater. Technol. 2 1600280
|
[11] |
Deng W, Huang L M, Xu X Z, Zhang X J, Jin X C, Lee S T and Jie J S 2017 Nano Lett. 17 2482
|
[12] |
Xie C, Mak C, Tao X M and Yan F 2017 Adv. Funct. Mater. 27 1603886
|
[13] |
Wang C L, Dong H L, Jiang L and Hu W P 2018 Chem. Soc. Rev. 47 422
|
[14] |
Jiang L, Fu Y Y, Li H X and Hu W P 2008 J. Am. Chem. Soc. 130 3937
|
[15] |
Zhou Y, Wang L, Wang J, Pei J and Cao Y 2008 Adv. Mater. 20 3745
|
[16] |
Ai N, Zhou Y, Zheng Y N, Chen H B, Wang J, Pei J and Cao Y 2013 Org. Electron. 14 1103
|
[17] |
Zhang Y P, Wang X D, Wu Y M, Jie J S, Zhang X W, Xing Y L, Wu H H, Zou B, Zhang X J and Zhang X H 2012 J. Mater. Chem. 22 14357
|
[18] |
Wu Y M, Zhang X J, Pan H H, Zhang X W, Zhang Y P, Zhang X Z and Jie J S 2013 Nanotechnology 24 355201
|
[19] |
Wu Y M, Zhang X J, Pan H H, Deng W, Zhang X H, Zhang X W and Jie J S 2013 Sci. Rep. 3 3248
|
[20] |
Deng W, Zhang X J, Huang L M, Xu X Z, Wang L, Wang J C, Shang Q X, Lee S T and Jie J S 2016 Adv. Mater. 28 2201
|
[21] |
Zou Y A, Zhang Y, Hu Y M and Gu H S 2018 Sensors 18 2072
|
[22] |
Sun B, Sun Y and Wang C X 2018 Small 14 1703391
|
[23] |
Bie Y Q, Liao Z M, Zhang H Z, Li G R, Ye Y, Zhou Y B, Xu J, Qin Z X, Dai L and Yu D P 2011 Adv. Mater. 23 649
|
[24] |
Wei M S, Yao K Y, Liu Y M, Yang C, Zang X N and Lin L W 2017 Small 13 1701328
|
[25] |
Zhang Y D, Jie J S, Sun Y N, Jeon S G, Zhang X J, Dai G L, Lee C J and Zhang X H 2017 Small 13 1604261
|
[26] |
Zheng S S, Xiong X, Zheng Z, Xu T, Zhang L, Zhai T Y and Lu X 2018 Carbon 126 299
|
[27] |
Kataria M, Yadav K, Cai S Y, Liao Y M, Lin H I, Shen T L, Chen Y H, Chen Y T, Wang W H and Chen Y F 2018 ACS Nano 12 9596
|
[28] |
Zeng L H, Xie C, Tao L L, Long H, Tang C Y, Tsang Y H and Jie J S 2015 Opt. Express 23 4839
|
[29] |
Song J, Qu J, Swihart M T and Prasad P N 2016 Nanomed. Nanotechnol. Bio. Med. 12 771
|
[30] |
Chen H Y, Liu H, Zhang Z M, Hu K and Fang X S 2016 Adv. Mater. 28 403
|
[31] |
Zhang X J, Jie J S, Zhang W F, Zhang C Y, Luo L B, He Z B, Zhang X H, Zhang W J, Lee C S and Lee S T 2008 Adv. Mater. 20 2427
|
[32] |
Xing Y L, Deng W, Wang H, Gong C, Zhang X J and Jie J S 2015 J. Nanosci. Nanotechnol. 15 4450
|
[33] |
Wang H, Deng W, Huang L M, Zhang X J and Jie J S 2016 ACS Appl. Mater. Inter. 8 7912
|
[34] |
Mas-Torrent M, Hadley P, Crivillers N, Veciana J and Rovira C 2006 ChemPhysChem 7 86
|
[35] |
Wang C L, Liu Y L, Wei Z M, Li H X, Xu W and Hu W P 2010 Appl. Phys. Lett. 96 143302
|
[36] |
Guo Y L, Du C Y, Yu G, Di C A, Jiang S D, Xi H X, Zheng J, Yan S K, Yu C L, Hu W P and Liu Y Q 2010 Adv. Funct. Mater. 20 1019
|
[37] |
Yu H, Bao Z A and Oh J H 2013 Adv. Funct. Mater. 23 629
|
[38] |
Johnson N M and Chiang A 1984 Appl. Phys. Lett. 45 1102
|
[39] |
Zhang J, Tan J H, Ma Z Y, Xu W, Zhao G Y, Geng H, Di C A, Hu W P, Shuai Z G, Singh K and Zhu D B 2013 J. Am. Chem. Soc. 135 558
|
[40] |
Mukherjee B, Mukherjee M, Sim K and Pyo S 2011 J. Mater. Chem. 21 1931
|
[41] |
Mukherjee B, Sim K, Shin T J, Lee J, Mukherjee M, Ree M and Pyo S 2012 J. Mater. Chem. 22 3192
|
[42] |
Yao Y F, Zhang L, Leydecker T and Samori P 2018 J. Am. Chem. Soc. 140 6984
|
[43] |
Kim Y S, Bae S Y, Kim K H, Lee T W, Hur J A, Hoang M H, Cho M J, Kim S J, Kim Y, Kim M, Lee K, Lee S J and Choi D H 2011 Chem. Commun. 47 8907
|
[44] |
Kim K H, Bae S Y, Kim Y S, Hur J A, Hoang M H, Lee T W, Cho M J, Kim Y, Kim M, Jin J I, Kim S J, Lee K, Lee S J and Choi D H 2011 Adv. Mater. 23 3095
|
[45] |
Wu G, Chen C, Liu S, Fan C C, Li H Y and Chen H Z 2015 Adv. Electron. Mater. 1 1500136
|
[46] |
Song I, Lee S C, Shang X, Ahn J, Jung H J, Jeong C U, Kim S W, Yoon W, Yung H, Kwon O P and Oh J H 2018 ACS Appl. Mater. Inter. 10 11826
|
[47] |
Mathews N, Fichou D, Menard E, Podzorov V and Mhaisalkar S G 2010 Appl. Phys. Lett. 97 212108
|
[48] |
Nguyen L N, Pradhan S K, Yen C N, Lin M C, Chen C H, Wu C S, Chang-Liao K S, Lin M T and Chen C D 2013 Appl. Phys. Lett. 103 183301
|
[49] |
Wang C, Ren X C, Xu C H, Fu B B, Wang R H, Zhang X T, Li R J, Li H X, Dong H L, Zhen Y G, Lei S B, Jiang L and Hu W P 2018 Adv. Mater. 30 1706260
|
[50] |
Jung J H, Yoon M J, Lim J W, Lee Y H, Lee K E, Kim D H and Oh J H 2017 Adv. Funct. Mater. 27 1604528
|
[51] |
Zhang Y J, Dong H L, Tang Q X, Ferdous S, Liu F, Mannsfeld S C B, Hu W P and Briseno A L 2010 J. Am. Chem. Soc. 132 11580
|
[52] |
Cui Q H, Jiang L, Zhang C, Zhao Y S, Hu W P and Yao J N 2012 Adv. Mater. 24 2332
|
[53] |
Park K S, Lee K S, Kang C M, Baek J, Han K S, Lee C, Lee Y E K, Kang Y and Sung M M 2015 Nano Lett. 15 289
|
[54] |
Wu B, Zhao Y H, Nan H Y, Yang Z Y, Zhang Y H, Zhao H J, He D W, Jiang Z L, Liu X L, Li Y, Shi Y, Ni Z H, Wang J L, Xu J B and Wang X R 2016 Nano Lett. 16 3754
|
[55] |
Zhang Y P, Deng W, Zhang X J, Zhang X W, Zhang X H, Xing Y L and Jie J S 2013 ACS Appl. Mater. Inter. 5 12288
|
[56] |
Deng W, Jie J S, Shang Q X, Wang J C, Zhang X J, Yao S W, Zhang Q and Zhang X H 2015 ACS Appl. Mater. Inter. 7 2039
|
[57] |
Gong X, Tong M H, Xia Y J, Cai W Z, Moon J S, Cao Y, Yu G, Shieh C L, Nilsson B and Heeger A J 2009 Science 325 1665
|
[58] |
Xie Y, Gong M G, Shastry T A, Lohrman J, Hersam M C and Ren S Q 2013 Adv. Mater. 25 3433
|
[59] |
He D W, Pan Y M, Nan H Y, Gu S A, Yang Z Y, Wu B, Luo X G, Xu B C, Zhang Y H, Li Y, Ni Z H, Wang B G, Zhu J, Chai Y, Shi Y and Wang X R 2015 Appl. Phys. Lett. 107 183103
|
[60] |
Zou T Y, Wang X Y, Ju H D, Wu Q, Guo T T, Wu W and Wang H 2018 J. Mater. Chem. C 6 1495
|
[61] |
Tang Q X, Li L Q, Song Y B, Liu Y L, Li H X, Xu W, Liu Y Q, Hu W P and Zhu D B 2007 Adv. Mater. 19 2624
|
[62] |
Jiang H, Yang X J, Cui Z D, Liu Y C, Li H X and Hu W P 2009 Appl. Phys. Lett. 94 123308
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|