Special Issue:
TOPICAL REVIEW — Photodetector: Materials, physics, and applications
|
TOPICAL REVIEW—Photodetector: materials, physics, and applications |
Prev
Next
|
|
|
Progress in quantum well and quantum cascade infrared photodetectors in SITP |
Xiaohao Zhou(周孝好), Ning Li(李宁), Wei Lu(陆卫) |
State key Laboratory for Infrared Physics, Shanghai Institute of Technical Physics(SITP), Chinese Academy of Sciences, Shanghai 200083, China |
|
|
Abstract This paper presents a review of recent advances in quantum well and quantum cascade infrared photodetectors developed in Shanghai Institute of Technical Physics, Chinese Academy of Sciences (SITP/CAS). Firstly, the temperature- and bias-dependent photocurrent spectra of very long wavelength (VLW) GaAs/AlGaAs quantum well infrared photodetectors (QWIPs) are studied using spectroscopic measurements and corresponding theoretical calculations in detail. We confirm that the first excited state, which belongs to the quasi-bound state, can be converted into a quasi-continuum state induced by bias and temperature. Aided by band structure calculations, we propose a model of the double excited states that determine the working mechanism in VLW QWIPs. Secondly, we present an overview of a VLW QWIP focal plane array (FPA) with 320×256 pixels based on the bound to quasi-bound (BTQB) design. The technology of the manufacturing FPA based on the QWIP structures has been demonstrated. At the operating temperature of 45 K, the detectivity of QWIP FPA is larger than 1.4×1010 cm·Hz1/2/W with a cutoff wavelength larger than 16 μm. Finally, to meet the needs of space applications, we proposed a new long wavelength quantum cascade detector with a broadband detection ranging from 7.6 μm to 10.4 μm. With a pair of identical coupled quantum wells separated by a thin barrier, acting as absorption regions, the relative linewidth (Δ E/E) of response can be dramatically broadened to 30.7%. It is shown that the spectral shape and linewidth can be tuned by the thickness of the thin barrier, while it is insensitive to the working temperature. The device can work above liquid nitrogen temperature with a peak responsivity of 63 mA/W and Johnson noise limited detectivity of 5.1×109 cm·Hz1/2/W.
|
Received: 26 November 2018
Revised: 19 December 2018
Accepted manuscript online:
|
PACS:
|
78.66.Fd
|
(III-V semiconductors)
|
|
78.67.De
|
(Quantum wells)
|
|
85.35.Be
|
(Quantum well devices (quantum dots, quantum wires, etc.))
|
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
Fund: Project supported by National Key Research and Development Program of China (Grant No. 2016YFB0402402) and the National Natural Science Foundation of China (Grant No. 61521005). |
Corresponding Authors:
Ning Li, Wei Lu
E-mail: ningli@mail.sitp.ac.cn;luwei@mail.sitp.ac.cn
|
Cite this article:
Xiaohao Zhou(周孝好), Ning Li(李宁), Wei Lu(陆卫) Progress in quantum well and quantum cascade infrared photodetectors in SITP 2019 Chin. Phys. B 28 027801
|
[1] |
Smith J S, Chiu L C, Margalit S, Yariv A and Cho A Y 1983 J. Vac. Sci. Technol. B 1 376
|
[2] |
Coon D D and Karunasiri R P G 1984 Appl. Phys. Lett. 45 649
|
[3] |
Goossen K W and Lyon S A 1985 Appl. Phys. Lett. 47 1257
|
[4] |
Levine B F, Choi K K, Bethea C G, Walker J and Malik R J 1987 Appl. Phys. Lett. 50 1092
|
[5] |
Gunapala S D, Bandara S V, Liu J K, Mumolo J M, Rafol S B and Ting D Z 2014 IEEE J. Sel. Top. Quantum Electron. 20 3802312
|
[6] |
Schneider H and Liu H C 2007 Quantum Well Infrared Photodetectors (Springer Series in Optical Sciences) (Berlin: Springer)
|
[7] |
Levine B F 1993 J. Appl. Phys. 74 R1
|
[8] |
Rogalski A 2003 J. Appl. Phys. 93 4355
|
[9] |
Levine B F, Bethea C G, Hasnain G, Shen V O, Pelve E, Abbott R R and Hsieh S J 1990 Appl. Phys. Lett. 56 851
|
[10] |
Gendron L, Carras M, Huynh A, Ortiz V, Koeniguer C and Berger V 2004 Appl. Phys. Lett. 85 2824
|
[11] |
Graf M, Scalari G, Hofstetter D, Faist J, Beere H, Linfield E, Ritchie D and Davies G 2004 Appl. Phys. Lett. 84 475
|
[12] |
Gendron L, Koeniguer C, Berger V and Marcadet X 2005 Appl. Phys. Lett. 86 121116
|
[13] |
Hofstetter D, Giorgetta F R, Baumann E, Yang Q, Manz C and Köhler K 2008 Appl. Phys. Lett. 93 221106
|
[14] |
Zhai S Q, Liu J Q, Wang X J, Zhuo N, Liu F Q, Wang Z G, Liu X H, Li N and Lu W 2013 Appl. Phys. Lett. 102 191120
|
[15] |
Sakr S, Giraud E, Dussaigne A, Tchernycheva M, Grandjean N and Julien F H 2012 Appl. Phys. Lett. 100 181103
|
[16] |
Sakr S, Crozat P, Gacemi D, Kotsar Y, Pesach A, Quach P, Isac N, Tchernycheva M, Vivien L, Bahir G, Monroy E and Julien F H 2013 Appl. Phys. Lett. 102 011135
|
[17] |
Hofstetter D, Di Francesco J, Hvozdara L, Herzig H P and Beck M 2011 Appl. Phys. B: Lasers Opt. 103 967
|
[18] |
Schwarz B, Reininger P, Ristanić D, Detz H, Andrews A M, Schrenk W and Strasser G 2014 Nat. Commun. 5 4085
|
[19] |
Harrer A, Szedlak R, Schwarz B, Moser H, Zederbauer T, MacFarl, D, Detz H, Andrews A M, Schrenk W, Lendl B and Strasser G 2016 Sci. Rep. 6 21795
|
[20] |
Reisinger A, Dennis R, Patnaude K, Burrows D, Bundas J, Beech K, Faska R and Sundaram M 2013 Infrared Phys. Technol. 59 112
|
[21] |
Penello G M, Merkel B, Sivco D L and Gmachl C 2015 Proc. Conf. Lasers Electro-Opt. CLEO: 2015
|
[22] |
Reininger P, Schwarz B, Detz H, Macfarl, D, Zederbauer T, Andrews A M, Schrenk W, Baumgartner O, Kosina H and Strasser G 2014 Appl. Phys. Lett. 105 091108
|
[23] |
Liu X H, Zhou X H, Li N, Wang L, Sun Q L, Liao K S, Huang L, Li Q, Li Z F, Chen P P and Lu W 2014 J. Appl. Phys. 115 124503
|
[24] |
Levine B F, Bethea C G, Choi K K, Walker J and Malik R J 1988 J. Appl. Phys. 64 1591
|
[25] |
Costard E and Bois P 2007 Infrared Phys. Technol. 50 260
|
[26] |
Jhabvala M and Choi K K 2012 Proc. SPIE 8268 82682P-1
|
[27] |
Andersson J Y, Lundqvist L and Paska Z F 1991 Appl. Phys. Lett. 58 2264
|
[28] |
Gunapala S D, Park J S, Sarusi G, Lin T L, Liu J K, Maker P D, Muller R E, Shott C A and Hoelter T 1997 IEEE Trans. Electron. Dev. 44 45
|
[29] |
Giorgetta F R, Baumann E, Graf M, Yang Q, Manz C, Köhler K, Beere H E, Ritchie D, Linfield E, Davies A G, Fedoryshyn Y, Jäckel H, Fischer M, Faist J and Hofstetter D 2009 IEEE J. Quantum Electron. 45 1039
|
[30] |
Li L, Zhou X H, Lin T, Li N, Zhu Z Q and Liu F Q 2016 Infrared Phys. Technol. 78 72
|
[31] |
Buffaz A, Carras M, Doyennette L, Trinité V, Marcadet X and Berger V 2010 Appl. Phys. Lett. 96 162103
|
[32] |
Gomez A, Pere-Laperne N, de Vaulchier L A, Koeniguer C, Vasanelli A, Nedelcu A, Marcadet X, Guldner Y and Berger V 2008 Phys. Rev. B 77 085307
|
[33] |
Li L, Zhou X H, Tang Z, Zhou Y W, Zheng Y L, Li N, Chen P P, Li Z F and Lu W 2018 J. Phys. D: Appl. Phys. 51 37LT01
|
[34] |
Gueriaux V, Bréire de l'Isle N, Berurier A, Huet O, Manissadjian A, Facoetti H, Marcadet X, Carras M, Trinité V, Nedelcu A 2011 Opt. Eng. 50 061013
|
[35] |
Palaferri D, Todorov Y, Bigioli A, Mottaghizadeh A, Gacemi D, Calabrese A, Vasanelli A, Li L, Davies A G, Linfield E H, Kapsalidis F, Beck M, Faist J and Sirtori C 2018 Nature 556 85
|
[36] |
Besikci C 2018 Infrared Phys. Technol. 95 152
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|