Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 027801    DOI: 10.1088/1674-1056/28/2/027801
Special Issue: TOPICAL REVIEW — Photodetector: Materials, physics, and applications
TOPICAL REVIEW—Photodetector: materials, physics, and applications Prev   Next  

Progress in quantum well and quantum cascade infrared photodetectors in SITP

Xiaohao Zhou(周孝好), Ning Li(李宁), Wei Lu(陆卫)
State key Laboratory for Infrared Physics, Shanghai Institute of Technical Physics(SITP), Chinese Academy of Sciences, Shanghai 200083, China
Abstract  This paper presents a review of recent advances in quantum well and quantum cascade infrared photodetectors developed in Shanghai Institute of Technical Physics, Chinese Academy of Sciences (SITP/CAS). Firstly, the temperature- and bias-dependent photocurrent spectra of very long wavelength (VLW) GaAs/AlGaAs quantum well infrared photodetectors (QWIPs) are studied using spectroscopic measurements and corresponding theoretical calculations in detail. We confirm that the first excited state, which belongs to the quasi-bound state, can be converted into a quasi-continuum state induced by bias and temperature. Aided by band structure calculations, we propose a model of the double excited states that determine the working mechanism in VLW QWIPs. Secondly, we present an overview of a VLW QWIP focal plane array (FPA) with 320×256 pixels based on the bound to quasi-bound (BTQB) design. The technology of the manufacturing FPA based on the QWIP structures has been demonstrated. At the operating temperature of 45 K, the detectivity of QWIP FPA is larger than 1.4×1010 cm·Hz1/2/W with a cutoff wavelength larger than 16 μm. Finally, to meet the needs of space applications, we proposed a new long wavelength quantum cascade detector with a broadband detection ranging from 7.6 μm to 10.4 μm. With a pair of identical coupled quantum wells separated by a thin barrier, acting as absorption regions, the relative linewidth (Δ E/E) of response can be dramatically broadened to 30.7%. It is shown that the spectral shape and linewidth can be tuned by the thickness of the thin barrier, while it is insensitive to the working temperature. The device can work above liquid nitrogen temperature with a peak responsivity of 63 mA/W and Johnson noise limited detectivity of 5.1×109 cm·Hz1/2/W.
Keywords:  infrared photodetectors      quantum well      focal plane array      detectivity      broadband response  
Received:  26 November 2018      Revised:  19 December 2018      Accepted manuscript online: 
PACS:  78.66.Fd (III-V semiconductors)  
  78.67.De (Quantum wells)  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Fund: Project supported by National Key Research and Development Program of China (Grant No. 2016YFB0402402) and the National Natural Science Foundation of China (Grant No. 61521005).
Corresponding Authors:  Ning Li, Wei Lu     E-mail:  ningli@mail.sitp.ac.cn;luwei@mail.sitp.ac.cn

Cite this article: 

Xiaohao Zhou(周孝好), Ning Li(李宁), Wei Lu(陆卫) Progress in quantum well and quantum cascade infrared photodetectors in SITP 2019 Chin. Phys. B 28 027801

[1] Smith J S, Chiu L C, Margalit S, Yariv A and Cho A Y 1983 J. Vac. Sci. Technol. B 1 376
[2] Coon D D and Karunasiri R P G 1984 Appl. Phys. Lett. 45 649
[3] Goossen K W and Lyon S A 1985 Appl. Phys. Lett. 47 1257
[4] Levine B F, Choi K K, Bethea C G, Walker J and Malik R J 1987 Appl. Phys. Lett. 50 1092
[5] Gunapala S D, Bandara S V, Liu J K, Mumolo J M, Rafol S B and Ting D Z 2014 IEEE J. Sel. Top. Quantum Electron. 20 3802312
[6] Schneider H and Liu H C 2007 Quantum Well Infrared Photodetectors (Springer Series in Optical Sciences) (Berlin: Springer)
[7] Levine B F 1993 J. Appl. Phys. 74 R1
[8] Rogalski A 2003 J. Appl. Phys. 93 4355
[9] Levine B F, Bethea C G, Hasnain G, Shen V O, Pelve E, Abbott R R and Hsieh S J 1990 Appl. Phys. Lett. 56 851
[10] Gendron L, Carras M, Huynh A, Ortiz V, Koeniguer C and Berger V 2004 Appl. Phys. Lett. 85 2824
[11] Graf M, Scalari G, Hofstetter D, Faist J, Beere H, Linfield E, Ritchie D and Davies G 2004 Appl. Phys. Lett. 84 475
[12] Gendron L, Koeniguer C, Berger V and Marcadet X 2005 Appl. Phys. Lett. 86 121116
[13] Hofstetter D, Giorgetta F R, Baumann E, Yang Q, Manz C and Köhler K 2008 Appl. Phys. Lett. 93 221106
[14] Zhai S Q, Liu J Q, Wang X J, Zhuo N, Liu F Q, Wang Z G, Liu X H, Li N and Lu W 2013 Appl. Phys. Lett. 102 191120
[15] Sakr S, Giraud E, Dussaigne A, Tchernycheva M, Grandjean N and Julien F H 2012 Appl. Phys. Lett. 100 181103
[16] Sakr S, Crozat P, Gacemi D, Kotsar Y, Pesach A, Quach P, Isac N, Tchernycheva M, Vivien L, Bahir G, Monroy E and Julien F H 2013 Appl. Phys. Lett. 102 011135
[17] Hofstetter D, Di Francesco J, Hvozdara L, Herzig H P and Beck M 2011 Appl. Phys. B: Lasers Opt. 103 967
[18] Schwarz B, Reininger P, Ristanić D, Detz H, Andrews A M, Schrenk W and Strasser G 2014 Nat. Commun. 5 4085
[19] Harrer A, Szedlak R, Schwarz B, Moser H, Zederbauer T, MacFarl, D, Detz H, Andrews A M, Schrenk W, Lendl B and Strasser G 2016 Sci. Rep. 6 21795
[20] Reisinger A, Dennis R, Patnaude K, Burrows D, Bundas J, Beech K, Faska R and Sundaram M 2013 Infrared Phys. Technol. 59 112
[21] Penello G M, Merkel B, Sivco D L and Gmachl C 2015 Proc. Conf. Lasers Electro-Opt. CLEO: 2015
[22] Reininger P, Schwarz B, Detz H, Macfarl, D, Zederbauer T, Andrews A M, Schrenk W, Baumgartner O, Kosina H and Strasser G 2014 Appl. Phys. Lett. 105 091108
[23] Liu X H, Zhou X H, Li N, Wang L, Sun Q L, Liao K S, Huang L, Li Q, Li Z F, Chen P P and Lu W 2014 J. Appl. Phys. 115 124503
[24] Levine B F, Bethea C G, Choi K K, Walker J and Malik R J 1988 J. Appl. Phys. 64 1591
[25] Costard E and Bois P 2007 Infrared Phys. Technol. 50 260
[26] Jhabvala M and Choi K K 2012 Proc. SPIE 8268 82682P-1
[27] Andersson J Y, Lundqvist L and Paska Z F 1991 Appl. Phys. Lett. 58 2264
[28] Gunapala S D, Park J S, Sarusi G, Lin T L, Liu J K, Maker P D, Muller R E, Shott C A and Hoelter T 1997 IEEE Trans. Electron. Dev. 44 45
[29] Giorgetta F R, Baumann E, Graf M, Yang Q, Manz C, Köhler K, Beere H E, Ritchie D, Linfield E, Davies A G, Fedoryshyn Y, Jäckel H, Fischer M, Faist J and Hofstetter D 2009 IEEE J. Quantum Electron. 45 1039
[30] Li L, Zhou X H, Lin T, Li N, Zhu Z Q and Liu F Q 2016 Infrared Phys. Technol. 78 72
[31] Buffaz A, Carras M, Doyennette L, Trinité V, Marcadet X and Berger V 2010 Appl. Phys. Lett. 96 162103
[32] Gomez A, Pere-Laperne N, de Vaulchier L A, Koeniguer C, Vasanelli A, Nedelcu A, Marcadet X, Guldner Y and Berger V 2008 Phys. Rev. B 77 085307
[33] Li L, Zhou X H, Tang Z, Zhou Y W, Zheng Y L, Li N, Chen P P, Li Z F and Lu W 2018 J. Phys. D: Appl. Phys. 51 37LT01
[34] Gueriaux V, Bréire de l'Isle N, Berurier A, Huet O, Manissadjian A, Facoetti H, Marcadet X, Carras M, Trinité V, Nedelcu A 2011 Opt. Eng. 50 061013
[35] Palaferri D, Todorov Y, Bigioli A, Mottaghizadeh A, Gacemi D, Calabrese A, Vasanelli A, Li L, Davies A G, Linfield E H, Kapsalidis F, Beck M, Faist J and Sirtori C 2018 Nature 556 85
[36] Besikci C 2018 Infrared Phys. Technol. 95 152
[1] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[2] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[3] Electronic properties and interfacial coupling in Pb islands on single-crystalline graphene
Jing-Peng Song(宋靖鹏) and Ang Li(李昂). Chin. Phys. B, 2022, 31(3): 037401.
[4] Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨). Chin. Phys. B, 2022, 31(3): 034208.
[5] Electron tunneling through double-electric barriers on HgTe/CdTe heterostructure interface
Liang-Zhong Lin(林亮中), Yi-Yun Ling(凌艺纭), Dong Zhang(张东), and Zhen-Hua Wu(吴振华). Chin. Phys. B, 2022, 31(11): 117201.
[6] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
[7] GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2021, 30(9): 094204.
[8] Optical polarization characteristics for AlGaN-based light-emitting diodes with AlGaN multilayer structure as well layer
Lu Xue(薛露), Yi Li(李毅), Mei Ge(葛梅), Mei-Yu Wang(王美玉), and You-Hua Zhu(朱友华). Chin. Phys. B, 2021, 30(4): 047802.
[9] Dispersion of exciton-polariton based on ZnO/MgZnO quantum wells at room temperature
Huying Zheng(郑湖颖), Zhiyang Chen(陈智阳), Hai Zhu(朱海), Ziying Tang(汤梓荧), Yaqi Wang(王亚琪), Haiyuan Wei(韦海园), Chongxin Shan(单崇新). Chin. Phys. B, 2020, 29(9): 097302.
[10] Exciton optical absorption in asymmetric ZnO/ZnMgO double quantum wells with mixed phases
Zhi-Qiang Han(韩智强), Li-Ying Song(宋丽颖), Yu-Hai Zan(昝宇海), Shi-Liang Ban(班士良). Chin. Phys. B, 2020, 29(7): 077104.
[11] A method to extend wavelength into middle-wavelength infrared based on InAsSb/(Al)GaSb interband transition quantum well infrared photodetector
Xuan-Zhang Li(李炫璋), Ling Sun(孙令), Jin-Lei Lu(鲁金蕾), Jie Liu(刘洁), Chen Yue(岳琛), Li-Li Xie(谢莉莉), Wen-Xin Wang(王文新), Hong Chen(陈弘), Hai-Qiang Jia(贾海强), Lu Wang(王禄). Chin. Phys. B, 2020, 29(3): 038504.
[12] Evaluation of polarization field in InGaN/GaN multiple quantum well structures by using electroluminescence spectra shift
Ping Chen(陈平), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Jing Yang(杨静), Jian-Jun Zhu(朱建军), Zong-Shun Liu(刘宗顺), Wei Liu(刘炜), Feng Liang(梁锋), Shuang-Tao Liu(刘双韬), Yao Xing(邢瑶), Li-Qun Zhang(张立群). Chin. Phys. B, 2020, 29(3): 034206.
[13] Improvement of TE-polarized emission in type-Ⅱ InAlN-AlGaN/AlGaN quantum well
Yi Li(李毅), Youhua Zhu(朱友华), Meiyu Wang(王美玉), Honghai Deng(邓洪海), Haihong Yin(尹海宏). Chin. Phys. B, 2019, 28(9): 097801.
[14] Non-perturbative multiphoton excitation studies in an excitonic coupled quantum well system using high-intensity THz laser fields
Monica Gambhir, Vinod Prasad. Chin. Phys. B, 2019, 28(8): 087803.
[15] Nonlocal effect on resonant radiation force exerted on semiconductor coupled quantum well nanostructures
Jin-Ke Zhang(张金珂), Ting-Ting Zhang(张婷婷), Yu-Liang Zhang(张玉亮), Guang-Hui Wang(王光辉), Dong-Mei Deng(邓冬梅). Chin. Phys. B, 2019, 28(6): 066803.
No Suggested Reading articles found!