Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 046301    DOI: 10.1088/1674-1056/28/4/046301
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First-principles study of structural, mechanical, and electronic properties of W alloying with Zr

Ning-Ning Zhang(张宁宁)1, Yu-Juan Zhang(张玉娟)1, Yu Yang(杨宇)2, Ping Zhang(张平)2, Chang-Chun Ge(葛昌纯)1
1 School of Materials Science and Engineering, University of Science and Technology Beijing(USTB), Beijing 100083, China;
2 LCP, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  

The structural, mechanical and electronic properties of W1-xZrx (x=0.0625, 0.125, 0.1875, 0.25, 0.5) are systematically investigated by means of first-principles calculation. The total-energy calculations demonstrate that the W-Zr binary substitutional solid solution remaining bcc structure can be formed at an atom level. In addition, the derived bulk modulus (B), shear modulus (G), Young's modulus (E) for each of W-Zr alloys decrease gradually with the increase of Zr concentration, suggesting that W alloying with higher Zr concentration becomes softer than pure W metal. Based on the mechanical characteristic B/G ratio, Poisson's ratio ϒ and Cauchy pressure C', all W1-xZrx alloys are regarded as ductile materials. The ductility for each of those materials is improved with the increase of Zr concentration. The calculated density of states indicates that the ductility of W1-xZrx is due to the fact that the bonding in the alloy becomes more metallic through increasing the Zr concentration in tungsten. These results provide incontrovertible evidence for the fact that Zr has a significant influence on the properties of W.

Keywords:  first-principles calculation      tungsten      zirconium      elastic properties  
Received:  06 October 2018      Revised:  14 February 2019      Accepted manuscript online: 
PACS:  63.20.dk (First-principles theory)  
  64.70.kd (Metals and alloys)  
  87.19.rd (Elastic properties)  
Fund: 

Project supported by the Beijing Municipal Natural Science Foundation, China (Grant No. 2182042) and the National Natural Science Foundation of China (Grant Nos. 11875004, 11505006, and 11604008).

Corresponding Authors:  Yu-Juan Zhang, Chang-Chun Ge     E-mail:  zhangyujuan@ustb.edu.cn;ccge@mater.ustb.edu.cn

Cite this article: 

Ning-Ning Zhang(张宁宁), Yu-Juan Zhang(张玉娟), Yu Yang(杨宇), Ping Zhang(张平), Chang-Chun Ge(葛昌纯) First-principles study of structural, mechanical, and electronic properties of W alloying with Zr 2019 Chin. Phys. B 28 046301

[1] Ren C, Fang Z Z, Koopman M, Butler B, Paramore J and Middlemas S 2018 Int. J. Reercat. Met. H. 75 170
[2] Barabash V, Federici G, Matera R, Raffray A R and ITER Home Teams 1999 Phys. Scr. T81 74
[3] Federici G, Anderl R A, Andrew P and ITER Home Teams 1999 J. Nucl. Mater. 266-269 14
[4] Federici G, Wuerz H, Janeschitz G and Tivey R 2002 Fusion Eng. 61-62 81
[5] Liu R, Xie Z, Hao T, Zhou Y, Wang X, Fang Q and Liu C 2014 J. Nucl. Mater. 451 35
[6] Xie Z, Liu R, Fang Q, Zhou Y, Wang X and Liu C 2014 J. Nucl. Mater. 444 175
[7] Xie Z, Liu R, Zhang T, Fang Q, Liu C, Liu X and Luo G 2016 Mater. Des. 107 144
[8] Xie Z, Liu R, Miao S, Yang X, Zhang T, Wang X, Fang Q, Liu C, Luo G, Lian Y and Liu X 2015 Sci. Rep. 5 16014
[9] Wu X, Kong X S, You Y W, Liu C S, Fang Q F, Chen J L, Luo G N and Wang Z 2014 J. Nucl. Mater. 455 151
[10] Wu X, Kong X S, You Y W, Liu C S, Fang Q F, Chen J L, Luo G N and Wang Z 2013 Nucl. Fusion 53 073049
[11] Kong X S, Wu X B, You Y W, Liu C S, Fang Q F, Chen J L, Luo G N and Wang Z G 2014 Acta Materialia 66 172
[12] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[13] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[14] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[15] Blöchl P E 1994 Phys. Rev. B 50 17953
[16] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[17] Hu Y J, Fellinger M R, Bulter B G, Wang Y, Darling K A, Kecskes L, Kecskes L J, Trinkle D R and Liu Z K 2017 Acta Mater. 141 304
[18] Wu X, Kong X S, You Y W, Liu C S, Fang Q F, Chen J L, Luo G N and Wang Z G 2013 Nucl. Fusion. 53 073049
[19] Rasch K D, Siegel R W and Schultz H 1980 Philos. Mag. A 41 91
[20] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[21] Zhao J J, Winey J M and Gupta Y M 2007 Phys. Rev. B 75 094105
[22] Wallace D C 1970 Solid State Phys. 25 301
[23] Voigt W 1889 Ann. Phys. 274 573
[24] Reuss A 1929 Zamm-Z. Angew. Math. Mech. 9 49
[25] Hill R 1963 J. Mech. Phys. Solids 11 357
[26] Zhai D, Wei Z, Feng Z F, Shao X H and Zhang P 2014 Acta Phys. Sin. 63 206501 (in Chinese)
[27] Soderlind P, Eriksson O, Wills J and Boring A 1993 Phys. Rev. B 48 5844
[28] Einarsdotter K, Sadigh B, Grimvall G and Ozolins V 1997 Phys. Rev. Lett. 79 2073
[29] Liu W, Li B S, Wang L P, Zhang J Z and Zhao Y S 2008 Appl. Phys. 104 076102
[30] Momida H, Yamashita T and Oguchi T 2014 J. Phys. Soc. Jpn. 83 124713
[31] Vegard L 1921 Z. Phys. 5 17
[32] Wei Z, Zhai D, Shao X H and Zhang P 2015 Chin. Phys. B 24 043102
[33] Hotje U, Rose C and Binnewies M 2003 Solid State Sci. 5 1259
[34] Jiang D Y, Ouyang C Y and Liu S Q 2016 Fusion Eng. 106 34
[35] Jiang D, Zhou Q, Xue L, Wang T and Hu J F 2018 Fusion Eng. 130 56
[36] Wei X, Chen Z, Zhong J, Wang L, Wang Y P and Shu Z L 2018 J. Magn. Mater. 456 150
[37] Li C M, Hu Q M, Yang R, Johansson B and Vitos L 2010 Phys. Rev. B 82 094201
[38] Zhu L F, Friák M, Dick A, Grabowski B, Hickel T, Liot F, Holec D, Schlieter A, Kühn U, Eckert J, Ebrahimi Z, Emmerich H and Neugebauer J 2012 Acta Mater. 60 1594
[39] Pugh S F 1954 London Edinburgh Dublin Philos. Mag. J. Sci. 45 823
[40] Yoo H M, Takasugi T, Hanada S and Izumi O 1990 Mater. Trans. JIM 31 435
[41] Kamran S, Chen K Y and Chen L 2009 Phys. Rev. B 79 024106
[42] Söderlind P, Eriksson O, Wills J M and Boring A M 1993 Phys. Rev. B 48 5844
[43] Wei N, Jia T, Zhang X, Liu T, Zeng Z and Yang X Y 2014 AIP Adv. 4 057103
[44] Ikehata H, Nagasako N, Furuta T, Fukumoto A, Miwa K and Saito T 2004 Phys. Rev. B 70 174113
[45] Turchi P E A and Gonis A 2001 Phys. Rev. B 64 085112
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Giant saturation absorption of tungsten trioxide film prepared based on the seedless layer hydrothermal method
Xiaoguang Ma(马晓光), Fangzhen Hu(胡芳珍), Xi Chen(陈希), Yimeng Wang(王艺盟), Xiaojian Hao(郝晓剑), Min Gu(顾敏), and Qiming Zhang(张启明). Chin. Phys. B, 2023, 32(3): 034212.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[10] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[13] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[14] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[15] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
No Suggested Reading articles found!