Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 037101    DOI: 10.1088/1674-1056/28/3/037101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Graphene-like Be3X2 (X=C, Si, Ge, Sn): A new family of two-dimensional topological insulators

Lingling Song(宋玲玲)1, Lizhi Zhang(张礼智)2, Yurou Guan(官雨柔)1, Jianchen Lu(卢建臣)1, Cuixia Yan(闫翠霞)1, Jinming Cai(蔡金明)1
1 Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China;
2 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

Using first-principle calculations, we predict a new family of stable two-dimensional (2D) topological insulators (TI), monolayer Be3X2 (X=C, Si, Ge, Sn) with honeycomb Kagome lattice. Based on the configuration of Be3C2, which has been reported to be a 2D Dirac material, we construct the other three 2D materials and confirm their stability according to their chemical bonding properties and phonon-dispersion relationships. Because of their tiny spin-orbit coupling (SOC) gaps, Be3C2 and Be3Si2 are 2D Dirac materials with high Fermi velocity at the same order of magnitude as that of graphene. For Be3Ge2 and Be3Sn2, the SOC gaps are 1.5 meV and 11.7 meV, and their topological nontrivial properties are also confirmed by their semi-infinite Dirac edge states. Our findings not only extend the family of 2D Dirac materials, but also open an avenue to track new 2DTI.

Keywords:  Dirac materials      topological insulator      first-principles calculation      spin-orbit coupling  
Received:  05 November 2018      Revised:  20 December 2018      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.20.At (Surface states, band structure, electron density of states)  
Corresponding Authors:  Cuixia Yan, Jinming Ca     E-mail:  j.cai@kmsut.edu;cuixiayan09@gmail.com

Cite this article: 

Lingling Song(宋玲玲), Lizhi Zhang(张礼智), Yurou Guan(官雨柔), Jianchen Lu(卢建臣), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明) Graphene-like Be3X2 (X=C, Si, Ge, Sn): A new family of two-dimensional topological insulators 2019 Chin. Phys. B 28 037101

[1] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[2] Novoselov K 2007 Nat. Mater. 6 720
[3] Wang Z F, Liu Z and Liu F 2013 Nat. Commun. 4 1471
[4] Zhou M, Ming W, Liu Z, Wang Z, Li P and Liu F 2014 Proc. Natl. Acad. Sci. USA 111 14378
[5] Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C and Jia J F 2015 Nat. Mater. 14 1020
[6] Zhang L Z, Zhai F, Jin K H, Cui B, Huang B, Wang Z, Lu J Q and Liu F 2017 Nano Lett. 17 4359
[7] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[8] Zhang L Z, Wang Z F, Huang B, Cui B, Wang Z, Du S X, Gao H J and Liu F 2016 Nano Lett. 16 2072
[9] Huang B, Jin K H, Zhuang H L, Zhang L and Liu F 2016 Phys. Rev. B 93 115117
[10] Li P, Zhou M, Zhang L, Guo Y and Liu F 2016 Nanotechnology 27 095703
[11] Chuang F C, Hsu C H, Huang Z Q, Kuo C C, Liu Y T, Lin H and Bansil A 2015 New J. Phys. 17 025005
[12] Young S M and Kane C L 2015 Phys. Rev. Lett. 115 126803
[13] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[14] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[15] Schumayer D and Hutchinson D A W 2011 Rev. Mod. Phys. 83 769
[16] Yao Y, Ye F, Qi X L, Zhang S C and Fang Z 2007 Phys. Rev. B 75 041401
[17] Mayorov A S, Elias D C, Mukhin I S, Morozov S V, Ponomarenko L A, Novoselov K S, Geim A K and Gorbachev R V 2012 Nano Lett. 12 4629
[18] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[19] Dai X 2016 Physics 12 5
[20] Cahangirov S, Topsakal M, Akturk E, Sahin H and Ciraci S 2009 Phys. Rev. Lett. 107 076802
[21] Malko D, Neiss C, Vines F and Goerling A 2012 Phys. Rev. Lett. 108 086804
[22] Xu L C, Wang R Z, Miao M S, Wei X L, Chen Y P, Yan H, Lau W M, Liu L M and Ma Y M 2014 Nanoscale 6 1113
[23] Zhang L Z, Wang Z F, Wang Z M, Du S X, Gao H J and Liu F 2015 J. Phys. Chem. Lett. 6 2959
[24] Cheng H E, Ming-Hui L U and Chen Y F 2008 Physics 1 16
[25] Li L, Kong X, Leenaerts O, Chen X, Sanyal B and Peeters F M 2017 Carbon 118 258
[26] Zhang L Z, Wang Z F, Du S X, Gao H J and Liu F 2014 Phys. Rev. B 90 161402
[27] Liu P F, Wu Y, Bo T, Hou L, Xu J, Zhang H J and Wang B T 2018 Phys. Chem. Chem. Phys. Pccp 20 732
[28] Wang B, Yuan S, Li Y, Shi L and Wang J 2017 Nanoscale 9 5577
[29] Xu Y, Yan B, Zhang H J, Wang J, Xu G, Tang P, Duan W and Zhang S C 2013 Phys. Rev. Lett. 111 136804
[30] Stadler R, Wolf W, Podloucky R, Kresse G, Furthmã1/4Ller J and Hafner J 1996 Phys. Rev. B 54 1729
[31] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[32] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[33] Parlinski K, Li Z Q and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
[34] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[35] Mostofi A A, Yates J R, Pizzi G, Lee Y S, Souza I, Vanderbilt D and Marzari N 2014 Comput. Phys. Commun. 185 2309
[36] Wu Q S, Zhang S N, Song H F, Troyer M and Soluyanov A A 2018 Comput. Phys. Commun. 224 405
[37] Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397
[38] Savin A, Jepsen O, Flad J, Andersen O K, Preuss H and Von Schnering H G 1992 Angew. Chem. 31 187
[39] Wallace P R 1947 Phys. Rev. 71 622
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[11] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[12] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[13] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[14] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[15] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
No Suggested Reading articles found!