1 Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China;
2 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Using first-principle calculations, we predict a new family of stable two-dimensional (2D) topological insulators (TI), monolayer Be3X2 (X=C, Si, Ge, Sn) with honeycomb Kagome lattice. Based on the configuration of Be3C2, which has been reported to be a 2D Dirac material, we construct the other three 2D materials and confirm their stability according to their chemical bonding properties and phonon-dispersion relationships. Because of their tiny spin-orbit coupling (SOC) gaps, Be3C2 and Be3Si2 are 2D Dirac materials with high Fermi velocity at the same order of magnitude as that of graphene. For Be3Ge2 and Be3Sn2, the SOC gaps are 1.5 meV and 11.7 meV, and their topological nontrivial properties are also confirmed by their semi-infinite Dirac edge states. Our findings not only extend the family of 2D Dirac materials, but also open an avenue to track new 2DTI.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.