Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 037102    DOI: 10.1088/1674-1056/28/3/037102
Special Issue: TOPICAL REVIEW — Fundamental research under high magnetic fields
TOPICAL REVIEW—Fundamental research under high magnetic fields Prev   Next  

Magnetochemistry and chemical synthesis

Lin Hu(胡林)1, Guoliang Xia(夏国良)2, Qianwang Chen(陈乾旺)1,2
1 Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China;
2 Hefei National Laboratory for Physical Science at Microscale, Department of Materials Science & Engineering, University of Science and Technology of China, Hefei 230026, China
Abstract  

High magnetic field is one of the effective tools to control a chemical reaction and materials synthesis. In this review, we summarized the magnetic field effects on chemical reactions, such as reaction pathway, growth behavior of nanomaterials, product phase, and magnetic domain of materials. The surface spins and activity of catalysts under magnetic fields were also discussed.

Keywords:  magnetochemistry      magnetic field effects  
Received:  08 January 2019      Revised:  15 January 2019      Accepted manuscript online: 
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
Corresponding Authors:  Lin Hu     E-mail:  hulin@hmfl.ac.cn

Cite this article: 

Lin Hu(胡林), Guoliang Xia(夏国良), Qianwang Chen(陈乾旺) Magnetochemistry and chemical synthesis 2019 Chin. Phys. B 28 037102

[1] Steiner U E and Ulrich T 1989 Chem. Rev. 89 51
[2] Bull N H 1985 Chem. Soc. Jpn. 58 1088
[3] Wakasa M and Hayashi H 1996 J. Phys. Chem. 100 15640
[4] Brocklehurst B 2002 Chem. Soc. Rev. 31 301
[5] Rodgers C T 2009 Pure Appl. Chem. 81 19
[6] Hu L, Zhang R R and Chen Q W 2014 Nanoscale 6 14064
[7] Wan M X and Yang J 1995 Synth. Met 69 155
[8] Pan H P, Shen Y, Wang H F, He L and Hu B 2015 Sci. Rep. 5 9105
[9] Shao M, Yan L, Pan H P, Ivanov I and Hu B 2011 Adv. Mater. 23 2216
[10] Zhang J Z, Chen Q W and Tao N 2008 J. Cryst. Growth. 310 3788
[11] Hu L and Chen Q W 2012 Mater. Chem. Phys. 133 541
[12] Wang J H, Ma Y W and Watanabe K 2008 Chem. Mater. 20 20
[13] Dong L C, Zhong Y B, Zhe S, Zheng T Y and Wang H 2016 RSC Adv. 6 21037
[14] He Z B, Yu S H, Zhou X Y, Li X G and Qu J F 2006 Adv. Funct. Mater. 16 1105
[15] Cai L, He J F, Liu Q H, Yao T, Chen L, Yan W S, Hu F C, Jiang Y, Zhao Y D, Hu T D, Sun Z H and Wei S Q 2015 J. Am. Chem. Soc. 137 2622
[16] Tongay S, Varnoosfaderani S S, Appleton B R, Wu J and Hebard A F 2012 Appl. Phys. Lett. 101 123105
[17] Geng X M, Sun W W, Wu W, Chen B, Al-Hilo A, Benamara M, Zhu H L, Watanabe F, Cui J B and Chen T 2016 Nat. Commun. 7 10672
[18] Wang J, Chen Q W, Zeng C and Hou B Y 2004 Adv. Mater. 16 137
[19] Pol V G, Pol S V, Calderon-Moreno J M, Sung M G, Asai S and Gedanken A 2006 Carbon 44 1913
[20] Xu Y B, Ren Z M, Ren W L, Cao G G, Deng K and Zhong Y B 2008 Nanotechnology 19 115602
[21] Wang M S and Chen Q W 2010 Chem.-Eur. J. 16 12088
[22] Sun L X and Chen Q W 2009 J. Phys. Chem. C 113 2710
[23] Sun L X, Chen Q W, Tang Y and Xiong Y 2007 Chem. Commun. 27 2844
[24] Wang J, Chen Q W, Li X G, Shi L, Peng Z M and Zeng C 2004 Chem. Phys. Lett. 390 55
[25] Li R, Yang Y, Li R and Chen Q W 2015 ACS Appl. Mater. Interfaces. 7 6019
[26] Gao L, Wang C L, Li R, Li R and Chen Q W 2016 Nanoscale 8 8355
[27] Okumura H, Endo S, Joonwichien S, Yamasue E and Ishihara K N 2015 Catal. Today 258 634
[28] Zhang W, Wang X X, Fu X Z 2003 Chem. Commun. 17 2196
[29] He C, Liu X H, Ji W J and Zhao J L 2016 Water Air & Soil Pollution 227 99
[30] Hu L, Wang Z, Wang H, Qu Z and Chen Q W 2018 RSC Adv. 8 13675
[1] Magnetic ground state of plutonium dioxide: DFT+U calculations
Yue-Fei Hou(侯跃飞), Wei Jiang(江伟), Shu-Jing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平). Chin. Phys. B, 2023, 32(2): 027103.
[2] CrAlGe: An itinerant ferromagnet with strong tunability by heat treatment
Zhaokun Dong(董昭昆), Zhen Wang(王振), Te Zhang(张特), Junsen Xiang(项俊森), Shuai Zhang(张帅), Lihua Liu(刘丽华), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117502.
[3] Quantum phase transitions in CePdAl probed by ultrasonic and thermoelectric measurements
Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Jiahao Zhang(张佳浩), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117103.
[4] Kondo screening cloud in a superconductor with mixed s-wave and p-wave pairing states
Zhen-Zhen Huang(黄真真), Xiong-Tao Peng(彭雄涛), Wan-Sheng Wang(王万胜), and Jin-Hua Sun(孙金华). Chin. Phys. B, 2022, 31(10): 107101.
[5] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[6] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[7] Uniaxial stress effect on quasi-one-dimensional Kondo lattice CeCo2Ga8
Kangqiao Cheng(程康桥), Binjie Zhou(周斌杰), Cuixiang Wang(王翠香), Shuo Zou(邹烁), Yupeng Pan(潘宇鹏), Xiaobo He(何晓波), Jian Zhang(张健), Fangjun Lu(卢方君), Le Wang(王乐), Youguo Shi(石友国), and Yongkang Luo(罗永康). Chin. Phys. B, 2022, 31(6): 067104.
[8] CeAu2In4: A candidate of quasi-one-dimensional antiferromagnetic Kondo lattice
Meng Lyu(吕孟), Hengcan Zhao(赵恒灿), Jiahao Zhang(张佳浩), Zhen Wang(王振), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2021, 30(8): 087101.
[9] Real-space parallel density matrix renormalization group with adaptive boundaries
Fu-Zhou Chen(陈富州), Chen Cheng(程晨), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(8): 080202.
[10] Magnetic impurity in hybrid and type-II nodal line semimetals
Xiao-Rong Yang(杨晓容), Zhen-Zhen Huang(黄真真), Wan-Sheng Wang(王万胜), and Jin-Hua Sun(孙金华). Chin. Phys. B, 2021, 30(6): 067103.
[11] Resistivity minimum emerges in Anderson impurity model modified with Sachdev-Ye-Kitaev interaction
Lan Zhang(张欄), Yin Zhong(钟寅), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(4): 047106.
[12] Intercalation of van der Waals layered materials: A route towards engineering of electron correlation
Jingjing Niu(牛晶晶), Wenjie Zhang(章文杰), Zhilin Li(李治林), Sixian Yang(杨嗣贤), Dayu Yan(闫大禹), Shulin Chen(陈树林), Zhepeng Zhang(张哲朋), Yanfeng Zhang(张艳锋), Xinguo Ren(任新国), Peng Gao(高鹏), Youguo Shi(石友国), Dapeng Yu(俞大鹏), Xiaosong Wu(吴孝松). Chin. Phys. B, 2020, 29(9): 097104.
[13] Improved hybrid parallel strategy for density matrix renormalization group method
Fu-Zhou Chen(陈富州), Chen Cheng(程晨), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(7): 070202.
[14] Lifshitz transition in triangular lattice Kondo-Heisenberg model
Lan Zhang(张欄), Yin Zhong(钟寅), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(7): 077102.
[15] Point-contact spectroscopy on antiferromagnetic Kondo semiconductors CeT2Al10 (T=Ru and Os)
Jie Li(李洁), Li-Qiang Che(车利强), Tian Le(乐天), Jia-Hao Zhang(张佳浩), Pei-Jie Sun(孙培杰), Toshiro Takabatake, Xin Lu(路欣). Chin. Phys. B, 2020, 29(7): 077103.
No Suggested Reading articles found!