Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 028102    DOI: 10.1088/1674-1056/28/2/028102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Superlubricity enabled dry transfer of non-encapsulated graphene

Zhe Ying(应哲)1,2, Aolin Deng(邓奥林)1,2, Bosai Lyu(吕博赛)1,2, Lele Wang(王乐乐)1,2, Takashi Taniguchi3, Kenji Watanabe3, Zhiwen Shi(史志文)1,2
1 Key Laboratory of Artificial Structures and Quantum Control(Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;
2 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China;
3 National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
Abstract  

Transferring high-quality exfoliated graphene flakes onto different substrates while keeping the graphene free of polymer residues is of great importance, but at the same time very challenging. Currently, the only feasible way is the so-called all-dry “pick-and-lift” method, in which a hexagonal boron nitride (hBN) flake is employed to serve as a stamp to pick up graphene from one substrate and to lift it down onto another substrate. The transferred graphene samples, however, are always covered or encapsulated by hBN flakes, which leads to difficulties in further characterizations. Here, we report an improved “pick-and-lift” method, which allows ultra-clean graphene flakes to be transferred onto a variety of substrates without hBN coverage. Basically, by exploiting the superlubricity at the graphene/hBN stack interface, we are able to remove the top-layer hBN stamp by applying a tangential force and expose the underneath graphene.

Keywords:  superlubricity      transfer      graphene      heterostructures  
Received:  11 December 2018      Revised:  16 December 2018      Accepted manuscript online: 
PACS:  81.05.ue (Graphene)  
  68.35.Af (Atomic scale friction)  
  78.66.-w (Optical properties of specific thin films)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0302001) and the National Natural Science Foundation of China (Grant Nos. 11574204 and 11774224).

Corresponding Authors:  Zhiwen Shi     E-mail:  zwshi@sjtu.edu.cn

Cite this article: 

Zhe Ying(应哲), Aolin Deng(邓奥林), Bosai Lyu(吕博赛), Lele Wang(王乐乐), Takashi Taniguchi, Kenji Watanabe, Zhiwen Shi(史志文) Superlubricity enabled dry transfer of non-encapsulated graphene 2019 Chin. Phys. B 28 028102

[1] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P and Shepard K L 2010 Nat. Nanotechnol. 5 722
[2] Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, Mucha-Kruczynski M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal'ko V I and Geim A K 2013 Nature 497 594
[3] Hunt B, Sanchez-Yamagishi J D, Young A F, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero1y P and Ashoori R C 2013 Science 340 1427
[4] Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J and Kim P 2013 Nature 497 598
[5] Jin C, Kim J, Mib U, Regan E C, Kleemann H, Cai H, Shen Y, Shinner M J, Sengupta A, Watanabe K, Taniguchi T, Tongay S, Zettl A and Wang F 2018 Science 360 893
[6] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 aac9439
[7] Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L and Dean C R 2013 Science 342 614
[8] Pizzocchero F, Gammelgaard L, Jessen B S, Caridad J M, Wang L, Hone J, Boggild P and Booth T J 2016 Nat. Commun. 7 11894
[9] Zomer P J, Guimarães M H D, Brant J C, Tombros N and Wees B J V 2014 Appl. Phys. Lett. 105 419
[10] Schneider G F, Calado V E, Zandbergen H, Vandersypen L M and Dekker C 2010 Nano Lett. 10 1912
[11] Jiao L, Fan B, Xian X, Wu Z, Zhang J and Liu Z 2008 J. Am. Chem. Soc. 130 12612
[12] Castellanosgomez A, Buscema M, Molenaar R, Singh V, Janssen L, Van d Z, Herre S J and Steele G A 2014 2D Materials 1 1002
[13] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[14] Yang W, Chen G, Shi Z, Liu C C, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y, Zhang Y and Zhang G 2013 Nat. Mater. 12 792
[15] Leven I, Krepel D, Shemesh O and Hod O 2013 J. Phys. Chem. Lett. 4 115
[16] Song Y, Mandelli D, Hod O, Urbakh M, Ma M and Zheng Q 2018 Nat. Mater. 17 894
[17] Hod O 2012 Phys. Rev. B 86 53
[18] Ribeiro-Palau R, Zhang C, Watanabe K, Taniguchi T, Hone J and Dean C R 2018 Science 361 690
[19] Wang D, Chen G, Li C, et al. 2016 Phys. Rev. Lett. 116 126101
[20] Kretinin A V, Cao Y, Tu J S, et al. 2014 Nano Lett. 14 3270
[21] Yankowitz M, Xue J, Cormode D, Sanchezyamagishi J D, Watanabe K, Taniguchi T, Jarilloherrero P, Jacquod P and Leroy B J 2012 Nat. Phys. 8 382
[22] Shi Z, Jin C, Yang W, Ju L, Horng J, Lu X, Bechtel H A, Martin M C, Fu D, Wu J, Watanabe K, Taniguchi T, Zhang Y, Bai X, Wang E, Zhang G and Wang F 2014 Nat. Phys. 10 743
[23] Woessner A, Lundeberg M B, Gao Y, Principi A, Alonsogonzález P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbr R and Koppens F H L 2015 Nat. Mater. 14 421
[24] Kang J H, Wang S, Shi Z, Zhao W, Yablonovitch E and Wang F 2017 Nano Lett. 17 1768
[25] Chen J, Badioli M, Alonsogonzález P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, Javier Garcia de Abajo F, Hillenbr R and Koppens F H L 2012 Nature 487 77
[26] Fei Z, Rodin A S, Andreev G O, Bao W, Mcleod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M Dominguez G, Fogler M M, Castro Neto A H Lau C N, Keilmann F and Basov D N 2012 Nature 487 82
[27] Principi A, Carrega M, Lundeberg M, Woessner A, Koppens F H L, Vignale G and Polini M 2014 Phys. Rev. B 90 165408
[28] Masubuchi S, Morimoto M, Morikawa S, Onodera M, Asakawa Y, Watanabe K, Taniguchi T and Machida T 2018 Nat. Commun. 9 1413
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[3] Fast population transfer with a superconducting qutrit via non-Hermitian shortcut to adiabaticity
Xin-Ping Dong(董新平), Zhi-Bo Feng(冯志波), Xiao-Jing Lu(路晓静), Ming Li(李明), and Zheng-Yin Zhao(赵正印). Chin. Phys. B, 2023, 32(3): 034201.
[4] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[5] Effect of bio-tissue deformation behavior due to intratumoral injection on magnetic hyperthermia
Yundong Tang(汤云东), Jian Zou(邹建), Rodolfo C.C. Flesch, and Tao Jin(金涛). Chin. Phys. B, 2023, 32(3): 034304.
[6] Engineering topological state transfer in four-period Su-Schrieffer-Heeger chain
Xi-Xi Bao(包茜茜), Gang-Feng Guo(郭刚峰), and Lei Tan(谭磊). Chin. Phys. B, 2023, 32(2): 020301.
[7] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[8] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[9] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[10] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[11] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[12] MoS2/Si tunnel diodes based on comprehensive transfer technique
Yi Zhu(朱翊), Hongliang Lv(吕红亮), Yuming Zhang(张玉明), Ziji Jia(贾紫骥), Jiale Sun(孙佳乐), Zhijun Lyu(吕智军), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(1): 018501.
[13] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[14] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[15] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
No Suggested Reading articles found!