INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Superlubricity enabled dry transfer of non-encapsulated graphene |
Zhe Ying(应哲)1,2, Aolin Deng(邓奥林)1,2, Bosai Lyu(吕博赛)1,2, Lele Wang(王乐乐)1,2, Takashi Taniguchi3, Kenji Watanabe3, Zhiwen Shi(史志文)1,2 |
1 Key Laboratory of Artificial Structures and Quantum Control(Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;
2 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China;
3 National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan |
|
|
Abstract Transferring high-quality exfoliated graphene flakes onto different substrates while keeping the graphene free of polymer residues is of great importance, but at the same time very challenging. Currently, the only feasible way is the so-called all-dry “pick-and-lift” method, in which a hexagonal boron nitride (hBN) flake is employed to serve as a stamp to pick up graphene from one substrate and to lift it down onto another substrate. The transferred graphene samples, however, are always covered or encapsulated by hBN flakes, which leads to difficulties in further characterizations. Here, we report an improved “pick-and-lift” method, which allows ultra-clean graphene flakes to be transferred onto a variety of substrates without hBN coverage. Basically, by exploiting the superlubricity at the graphene/hBN stack interface, we are able to remove the top-layer hBN stamp by applying a tangential force and expose the underneath graphene.
|
Received: 11 December 2018
Revised: 16 December 2018
Accepted manuscript online:
|
PACS:
|
81.05.ue
|
(Graphene)
|
|
68.35.Af
|
(Atomic scale friction)
|
|
78.66.-w
|
(Optical properties of specific thin films)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0302001) and the National Natural Science Foundation of China (Grant Nos. 11574204 and 11774224). |
Corresponding Authors:
Zhiwen Shi
E-mail: zwshi@sjtu.edu.cn
|
Cite this article:
Zhe Ying(应哲), Aolin Deng(邓奥林), Bosai Lyu(吕博赛), Lele Wang(王乐乐), Takashi Taniguchi, Kenji Watanabe, Zhiwen Shi(史志文) Superlubricity enabled dry transfer of non-encapsulated graphene 2019 Chin. Phys. B 28 028102
|
[1] |
Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P and Shepard K L 2010 Nat. Nanotechnol. 5 722
|
[2] |
Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, Mucha-Kruczynski M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal'ko V I and Geim A K 2013 Nature 497 594
|
[3] |
Hunt B, Sanchez-Yamagishi J D, Young A F, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero1y P and Ashoori R C 2013 Science 340 1427
|
[4] |
Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J and Kim P 2013 Nature 497 598
|
[5] |
Jin C, Kim J, Mib U, Regan E C, Kleemann H, Cai H, Shen Y, Shinner M J, Sengupta A, Watanabe K, Taniguchi T, Tongay S, Zettl A and Wang F 2018 Science 360 893
|
[6] |
Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 aac9439
|
[7] |
Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L and Dean C R 2013 Science 342 614
|
[8] |
Pizzocchero F, Gammelgaard L, Jessen B S, Caridad J M, Wang L, Hone J, Boggild P and Booth T J 2016 Nat. Commun. 7 11894
|
[9] |
Zomer P J, Guimarães M H D, Brant J C, Tombros N and Wees B J V 2014 Appl. Phys. Lett. 105 419
|
[10] |
Schneider G F, Calado V E, Zandbergen H, Vandersypen L M and Dekker C 2010 Nano Lett. 10 1912
|
[11] |
Jiao L, Fan B, Xian X, Wu Z, Zhang J and Liu Z 2008 J. Am. Chem. Soc. 130 12612
|
[12] |
Castellanosgomez A, Buscema M, Molenaar R, Singh V, Janssen L, Van d Z, Herre S J and Steele G A 2014 2D Materials 1 1002
|
[13] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[14] |
Yang W, Chen G, Shi Z, Liu C C, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y, Zhang Y and Zhang G 2013 Nat. Mater. 12 792
|
[15] |
Leven I, Krepel D, Shemesh O and Hod O 2013 J. Phys. Chem. Lett. 4 115
|
[16] |
Song Y, Mandelli D, Hod O, Urbakh M, Ma M and Zheng Q 2018 Nat. Mater. 17 894
|
[17] |
Hod O 2012 Phys. Rev. B 86 53
|
[18] |
Ribeiro-Palau R, Zhang C, Watanabe K, Taniguchi T, Hone J and Dean C R 2018 Science 361 690
|
[19] |
Wang D, Chen G, Li C, et al. 2016 Phys. Rev. Lett. 116 126101
|
[20] |
Kretinin A V, Cao Y, Tu J S, et al. 2014 Nano Lett. 14 3270
|
[21] |
Yankowitz M, Xue J, Cormode D, Sanchezyamagishi J D, Watanabe K, Taniguchi T, Jarilloherrero P, Jacquod P and Leroy B J 2012 Nat. Phys. 8 382
|
[22] |
Shi Z, Jin C, Yang W, Ju L, Horng J, Lu X, Bechtel H A, Martin M C, Fu D, Wu J, Watanabe K, Taniguchi T, Zhang Y, Bai X, Wang E, Zhang G and Wang F 2014 Nat. Phys. 10 743
|
[23] |
Woessner A, Lundeberg M B, Gao Y, Principi A, Alonsogonzález P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbr R and Koppens F H L 2015 Nat. Mater. 14 421
|
[24] |
Kang J H, Wang S, Shi Z, Zhao W, Yablonovitch E and Wang F 2017 Nano Lett. 17 1768
|
[25] |
Chen J, Badioli M, Alonsogonzález P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, Javier Garcia de Abajo F, Hillenbr R and Koppens F H L 2012 Nature 487 77
|
[26] |
Fei Z, Rodin A S, Andreev G O, Bao W, Mcleod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M Dominguez G, Fogler M M, Castro Neto A H Lau C N, Keilmann F and Basov D N 2012 Nature 487 82
|
[27] |
Principi A, Carrega M, Lundeberg M, Woessner A, Koppens F H L, Vignale G and Polini M 2014 Phys. Rev. B 90 165408
|
[28] |
Masubuchi S, Morimoto M, Morikawa S, Onodera M, Asakawa Y, Watanabe K, Taniguchi T and Machida T 2018 Nat. Commun. 9 1413
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|