Special Issue:
TOPICAL REVIEW — Photodetector: Materials, physics, and applications
|
TOPICAL REVIEW—Photodetector: materials, physics, and applications |
Prev
Next
|
|
|
Review of deep ultraviolet photodetector based on gallium oxide |
Yuan Qin(覃愿)1,3, Shibing Long(龙世兵)2,3, Hang Dong(董航)1,3, Qiming He(何启鸣)1, Guangzhong Jian(菅光忠)1,3, Ying Zhang(张颖)1,3, Xiaohu Hou(侯小虎)2, Pengju Tan(谭鹏举)2, Zhongfang Zhang(张中方)2, Hangbing Lv(吕杭炳)1,3, Qi Liu(刘琦)1,3, Ming Liu(刘明)1,3 |
1 Key Laboratory of Microelectronics Devices & Integration Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
2 School of Microelectronics, University of Science and Technology of China, Hefei 230026, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Ultraviolet (UV) photodetectors (PDs) have drawn great attention in recent years due to their potential application in civil and military fields. Because of its ultrawide bandgap, low cost, strong radiation hardness, and high thermal and chemical stability with high visible-light transparency, Ga2O3 is regarded as the most promising candidate for UV detection. Furthermore, the bandgap of Ga2O3 is as high as 4.7-4.9 eV, directly corresponding to the solar-blind UV detection band with wavelength less than 280 nm. There is no need of doping in Ga2O3 to tune its bandgap, compared to AlGaN, MgZnO, etc, thereby avoiding alloy composition fluctuations and phase separation. At present, solar-blind Ga2O3 photodetectors based on single crystal or amorphous Ga2O3 are mainly focused on metal-semiconductor-metal and Schottky photodiodes. In this work, the recent achievements of Ga2O3 photodetectors are systematically reviewed. The characteristics and performances of different photodetector structures based on single crystal Ga2O3 and amorphous Ga2O3 thin film are analyzed and compared. Finally, the prospects of Ga2O3 UV photodetectors are forecast.
|
Received: 17 September 2018
Revised: 20 October 2018
Accepted manuscript online:
|
PACS:
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
73.61.Ga
|
(II-VI semiconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61521064, 61522408, 61574169, 61334007, 61474136, and 61574166), the Ministry of Science and Technology of China (Grant Nos. 2018YFB0406504, 2016YFA0201803, 2016YFA0203800, and 2017YFB0405603), the Key Research Program of Frontier Sciences of Chinese Academy of Sciences (Grant Nos. QYZDB-SSW-JSC048 and QYZDY-SSW-JSC001), and the Beijing Municipal Science and Technology Project, China (Grant No. Z171100002017011). |
Corresponding Authors:
Shibing Long
E-mail: shibinglong@ustc.edu.cn
|
Cite this article:
Yuan Qin(覃愿), Shibing Long(龙世兵), Hang Dong(董航), Qiming He(何启鸣), Guangzhong Jian(菅光忠), Ying Zhang(张颖), Xiaohu Hou(侯小虎), Pengju Tan(谭鹏举), Zhongfang Zhang(张中方), Hangbing Lv(吕杭炳), Qi Liu(刘琦), Ming Liu(刘明) Review of deep ultraviolet photodetector based on gallium oxide 2019 Chin. Phys. B 28 018501
|
[1] |
Chen H, Liu K, Hu L, Al-Ghamdi A A and Fang X 2015 Mater. Today 18 493
|
[2] |
Razeghi M 2002 Proc. IEEE 90 1006
|
[3] |
Sang L, Liao M and Sumiya M 2013 Sensors 13 10482
|
[4] |
Razeghi M and Rogalski A 1996 J. Appl. Phys. 79 7433
|
[5] |
Muñoz E, Monroy E, Pau J L, Calle F, Omnés F and Gibart P 2001 J. Phys.: Condens. Matter 13 7115
|
[6] |
Yu-Zung C and Jing-Jou T 2004 Jpn. J. Appl. Phys. 43 4146
|
[7] |
Fan M M, Liu K W, Zhang Z Z, Li B H, Chen X, Zhao D X, Shan C X and Shen D Z 2014 Appl. Phys. Lett. 105 011117
|
[8] |
Kokubun Y, Miura K, Endo F and Nakagomi S 2007 Appl. Phys. Lett. 90 031912
|
[9] |
Takayoshi O, Takeya O and Shizuo F 2007 Jpn. J. Appl. Phys. 46 7217
|
[10] |
Arora K, Goel N, Kumar M and Kumar M 2018 ACS Photon. 5 2391
|
[11] |
Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z and Li Y R 2017 ACS Photon. 4 2203
|
[12] |
Chen X, Xu Y, Zhou D, Yang S, Ren F F, Lu H, Tang K, Gu S, Zhang R, Zheng Y and Ye J 2017 ACS Appl. Mater. & Interfaces 9 36997
|
[13] |
Chen Y C, Lu Y J, Lin C N, Tian Y Z, Gao C J, Dong L and Shan C X 2018 J. Mater. Chem. C 6 5727
|
[14] |
Kong W Y, Wu G A, Wang K Y, Zhang T F, Zou Y F, Wang D D and Luo L B 2016 Advanced Mater. 28 10725
|
[15] |
Qu Y, Wu Z, Ai M, Guo D, An Y, Yang H, Li L and Tang W 2016 J. Alloys Compd. 680 247
|
[16] |
A Singh Pratiyush, Krishnamoorthy S, S Vishnu Solanke, Xia Z, Muralidharan R, Rajan S and Nath D N 2017 Appl. Phys. Lett. 110 221107
|
[17] |
Guo D, Wu Z, Li P, An Y, Liu H, Guo X, Yan H, Wang G, Sun C, Li L and Tang W 2014 Opt. Mater. Express 4 1067
|
[18] |
Guo D Y, Wu Z P, An Y H, Guo X C, Chu X L, Sun C L, Li L H, Li P G and Tang W H 2014 Appl. Phys. Lett. 105 023507
|
[19] |
Huang C Y, Horng R H, Wuu D S, Tu L W and Kao H S 2013 Appl. Phys. Lett. 102 011119
|
[20] |
Hu G C, Shan C X, Zhang N, Jiang M M, Wang S P and Shen D Z 2015 Opt. Express 23 13554
|
[21] |
Feng Q, Huang L, Han G, Li F, Li X, Fang L, Xing X, Zhang J, Mu W, Jia Z, Guo D, Tang W, Tao X and Hao Y 2016 IEEE Trans. Electron. Devices 63 3578
|
[22] |
Cui S, Mei Z, Zhang Y, Liang H and Du X 2017 Advanced Opt. Mater. 5 1700454
|
[23] |
Alema F, Hertog B, Ledyaev O, Volovik D, Thoma G, Miller R, Osinsky A, Mukhopadhyay P, Bakhshi S, Ali H and Schoenfeld W V 2017 Phys. Status Solidi (a) 214 1600688
|
[24] |
Ma X, Zhang Y, Dong L and Jia R 2017 Results Phys. 7 1582
|
[25] |
Qian Y P, Guo D Y, Chu X L, Shi H Z, Zhu W K, Wang K, Huang X K, Wang H, Wang S L, Li P G, Zhang X H and Tang W H 2017 Mater. Lett. 209 558
|
[26] |
Feng Q, Li X, Han G, Huang L, Li F, Tang W, Zhang J and Hao Y 2017 Opt. Mater. Express 7 1240
|
[27] |
Yuan S, Wang C, Huang S and Wuu D 2018 IEEE Electron Device Lett. 39 220
|
[28] |
An Y, Chu X, Huang Y, Zhi Y, Guo D, Li P, Wu Z and Tang W 2016 Prog. Nat. Sci.: Mater. Int. 26 65
|
[29] |
Cui S J, Mei Z X, Hou Y N, Chen Q S, Liang H L, Zhang Y H, Huo W X and Du X L 2018 Chin. Phys. B 27 067301
|
[30] |
Oh S, Kim C K and Kim J 2018 ACS Photon. 5 1123
|
[31] |
Oh S, Mastro M A, Tadjer M J and Kim J 2017 ECS J. Solid State Sci. Technol. 6 Q79-Q83
|
[32] |
Peng Y, Zhang Y, Chen Z, Guo D, Zhang X, Li P, Wu Z and Tang W 2018 IEEE Photon. Technol. Lett. 30 993
|
[33] |
Suzuki R, Nakagomi S, Kokubun Y, Arai N and Ohira S 2009 Appl. Phys. Lett. 94 222102
|
[34] |
Yang C, Liang H, Zhang Z, Xia X, Tao P, Chen Y, Zhang H, Shen R, Luo Y and Du G 2018 RSC Adv. 8 6341
|
[35] |
Chen X, Liu K, Zhang Z, Wang C, Li B, Zhao H, Zhao D and Shen D 2016 ACS Appl. Mater. & Interfaces 8 4185
|
[36] |
Guo D, Liu H, Li P, Wu Z, Wang S, Cui C, Li C and Tang W 2017 ACS Appl. Mater. & Interfaces 9 1619
|
[37] |
Wu Z, Jiao L, Wang X, Guo D, Li W, Li L, Huang F and Tang W 2017 J. Mater. Chem. C 5 8688
|
[38] |
Ahn S, Ren F, Oh S, Jung Y, Kim J, Mastro M A, Hite J K, Eddy C R and Pearton S J 2016 J. Vac. Sci. & Technol. B 34 041207
|
[39] |
Nakagomi S, Momo T, Takahashi S and Kokubun Y 2013 Appl. Phys. Lett. 103 072105
|
[40] |
Nakagomi S, Sato T A, Takahashi Y and Kokubun Y 2015 Sensors Actuators A: Phys. 232 208
|
[41] |
Ai M, Guo D, Qu Y, Cui W, Wu Z, Li P, Li L and Tang W 2017 J. Alloys Compd. 692 634
|
[42] |
He T, Zhao Y, Zhang X, Lin W, Fu K, Sun C, Shi F, Ding X, Yu G, Zhang K, Lu S, Zhang X and Zhang B 2018 Nano Photon. 7 1557
|
[43] |
Lin R, Zheng W, Zhang D, Zhang Z, Liao Q, Yang L and Huang F 2018 ACS Appl. Mater. & Interfaces 10 22419
|
[44] |
Guo D Y, Shi H Z, Qian Y P, Lv M, Li P G, Su Y L, Liu Q, Chen K, Wang S L, Cui C, Li C R and Tang W H 2017 Semiconductor Sci. Technol. 32 03LT01
|
[45] |
Zhao B, Wang F, Chen H, Zheng L, Su L, Zhao D and Fang X 2017 Advanced Funct. Mater. 27 1700264
|
[46] |
Chen M, Zhao B, Hu G, Fang X, Wang H, Wang L, Luo J, Han X, Wang X, Pan C and Wang Z L 2018 Advanced Funct. Mater. 28 1706379
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|