Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 018501    DOI: 10.1088/1674-1056/28/1/018501
Special Issue: TOPICAL REVIEW — Photodetector: Materials, physics, and applications
TOPICAL REVIEW—Photodetector: materials, physics, and applications Prev   Next  

Review of deep ultraviolet photodetector based on gallium oxide

Yuan Qin(覃愿)1,3, Shibing Long(龙世兵)2,3, Hang Dong(董航)1,3, Qiming He(何启鸣)1, Guangzhong Jian(菅光忠)1,3, Ying Zhang(张颖)1,3, Xiaohu Hou(侯小虎)2, Pengju Tan(谭鹏举)2, Zhongfang Zhang(张中方)2, Hangbing Lv(吕杭炳)1,3, Qi Liu(刘琦)1,3, Ming Liu(刘明)1,3
1 Key Laboratory of Microelectronics Devices & Integration Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
2 School of Microelectronics, University of Science and Technology of China, Hefei 230026, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

Ultraviolet (UV) photodetectors (PDs) have drawn great attention in recent years due to their potential application in civil and military fields. Because of its ultrawide bandgap, low cost, strong radiation hardness, and high thermal and chemical stability with high visible-light transparency, Ga2O3 is regarded as the most promising candidate for UV detection. Furthermore, the bandgap of Ga2O3 is as high as 4.7-4.9 eV, directly corresponding to the solar-blind UV detection band with wavelength less than 280 nm. There is no need of doping in Ga2O3 to tune its bandgap, compared to AlGaN, MgZnO, etc, thereby avoiding alloy composition fluctuations and phase separation. At present, solar-blind Ga2O3 photodetectors based on single crystal or amorphous Ga2O3 are mainly focused on metal-semiconductor-metal and Schottky photodiodes. In this work, the recent achievements of Ga2O3 photodetectors are systematically reviewed. The characteristics and performances of different photodetector structures based on single crystal Ga2O3 and amorphous Ga2O3 thin film are analyzed and compared. Finally, the prospects of Ga2O3 UV photodetectors are forecast.

Keywords:  gallium oxide      ultrawide bandgap      ultraviolet (UV)      photodetector  
Received:  17 September 2018      Revised:  20 October 2018      Accepted manuscript online: 
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  73.61.Ga (II-VI semiconductors)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61521064, 61522408, 61574169, 61334007, 61474136, and 61574166), the Ministry of Science and Technology of China (Grant Nos. 2018YFB0406504, 2016YFA0201803, 2016YFA0203800, and 2017YFB0405603), the Key Research Program of Frontier Sciences of Chinese Academy of Sciences (Grant Nos. QYZDB-SSW-JSC048 and QYZDY-SSW-JSC001), and the Beijing Municipal Science and Technology Project, China (Grant No. Z171100002017011).

Corresponding Authors:  Shibing Long     E-mail:  shibinglong@ustc.edu.cn

Cite this article: 

Yuan Qin(覃愿), Shibing Long(龙世兵), Hang Dong(董航), Qiming He(何启鸣), Guangzhong Jian(菅光忠), Ying Zhang(张颖), Xiaohu Hou(侯小虎), Pengju Tan(谭鹏举), Zhongfang Zhang(张中方), Hangbing Lv(吕杭炳), Qi Liu(刘琦), Ming Liu(刘明) Review of deep ultraviolet photodetector based on gallium oxide 2019 Chin. Phys. B 28 018501

[1] Chen H, Liu K, Hu L, Al-Ghamdi A A and Fang X 2015 Mater. Today 18 493
[2] Razeghi M 2002 Proc. IEEE 90 1006
[3] Sang L, Liao M and Sumiya M 2013 Sensors 13 10482
[4] Razeghi M and Rogalski A 1996 J. Appl. Phys. 79 7433
[5] Muñoz E, Monroy E, Pau J L, Calle F, Omnés F and Gibart P 2001 J. Phys.: Condens. Matter 13 7115
[6] Yu-Zung C and Jing-Jou T 2004 Jpn. J. Appl. Phys. 43 4146
[7] Fan M M, Liu K W, Zhang Z Z, Li B H, Chen X, Zhao D X, Shan C X and Shen D Z 2014 Appl. Phys. Lett. 105 011117
[8] Kokubun Y, Miura K, Endo F and Nakagomi S 2007 Appl. Phys. Lett. 90 031912
[9] Takayoshi O, Takeya O and Shizuo F 2007 Jpn. J. Appl. Phys. 46 7217
[10] Arora K, Goel N, Kumar M and Kumar M 2018 ACS Photon. 5 2391
[11] Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z and Li Y R 2017 ACS Photon. 4 2203
[12] Chen X, Xu Y, Zhou D, Yang S, Ren F F, Lu H, Tang K, Gu S, Zhang R, Zheng Y and Ye J 2017 ACS Appl. Mater. & Interfaces 9 36997
[13] Chen Y C, Lu Y J, Lin C N, Tian Y Z, Gao C J, Dong L and Shan C X 2018 J. Mater. Chem. C 6 5727
[14] Kong W Y, Wu G A, Wang K Y, Zhang T F, Zou Y F, Wang D D and Luo L B 2016 Advanced Mater. 28 10725
[15] Qu Y, Wu Z, Ai M, Guo D, An Y, Yang H, Li L and Tang W 2016 J. Alloys Compd. 680 247
[16] A Singh Pratiyush, Krishnamoorthy S, S Vishnu Solanke, Xia Z, Muralidharan R, Rajan S and Nath D N 2017 Appl. Phys. Lett. 110 221107
[17] Guo D, Wu Z, Li P, An Y, Liu H, Guo X, Yan H, Wang G, Sun C, Li L and Tang W 2014 Opt. Mater. Express 4 1067
[18] Guo D Y, Wu Z P, An Y H, Guo X C, Chu X L, Sun C L, Li L H, Li P G and Tang W H 2014 Appl. Phys. Lett. 105 023507
[19] Huang C Y, Horng R H, Wuu D S, Tu L W and Kao H S 2013 Appl. Phys. Lett. 102 011119
[20] Hu G C, Shan C X, Zhang N, Jiang M M, Wang S P and Shen D Z 2015 Opt. Express 23 13554
[21] Feng Q, Huang L, Han G, Li F, Li X, Fang L, Xing X, Zhang J, Mu W, Jia Z, Guo D, Tang W, Tao X and Hao Y 2016 IEEE Trans. Electron. Devices 63 3578
[22] Cui S, Mei Z, Zhang Y, Liang H and Du X 2017 Advanced Opt. Mater. 5 1700454
[23] Alema F, Hertog B, Ledyaev O, Volovik D, Thoma G, Miller R, Osinsky A, Mukhopadhyay P, Bakhshi S, Ali H and Schoenfeld W V 2017 Phys. Status Solidi (a) 214 1600688
[24] Ma X, Zhang Y, Dong L and Jia R 2017 Results Phys. 7 1582
[25] Qian Y P, Guo D Y, Chu X L, Shi H Z, Zhu W K, Wang K, Huang X K, Wang H, Wang S L, Li P G, Zhang X H and Tang W H 2017 Mater. Lett. 209 558
[26] Feng Q, Li X, Han G, Huang L, Li F, Tang W, Zhang J and Hao Y 2017 Opt. Mater. Express 7 1240
[27] Yuan S, Wang C, Huang S and Wuu D 2018 IEEE Electron Device Lett. 39 220
[28] An Y, Chu X, Huang Y, Zhi Y, Guo D, Li P, Wu Z and Tang W 2016 Prog. Nat. Sci.: Mater. Int. 26 65
[29] Cui S J, Mei Z X, Hou Y N, Chen Q S, Liang H L, Zhang Y H, Huo W X and Du X L 2018 Chin. Phys. B 27 067301
[30] Oh S, Kim C K and Kim J 2018 ACS Photon. 5 1123
[31] Oh S, Mastro M A, Tadjer M J and Kim J 2017 ECS J. Solid State Sci. Technol. 6 Q79-Q83
[32] Peng Y, Zhang Y, Chen Z, Guo D, Zhang X, Li P, Wu Z and Tang W 2018 IEEE Photon. Technol. Lett. 30 993
[33] Suzuki R, Nakagomi S, Kokubun Y, Arai N and Ohira S 2009 Appl. Phys. Lett. 94 222102
[34] Yang C, Liang H, Zhang Z, Xia X, Tao P, Chen Y, Zhang H, Shen R, Luo Y and Du G 2018 RSC Adv. 8 6341
[35] Chen X, Liu K, Zhang Z, Wang C, Li B, Zhao H, Zhao D and Shen D 2016 ACS Appl. Mater. & Interfaces 8 4185
[36] Guo D, Liu H, Li P, Wu Z, Wang S, Cui C, Li C and Tang W 2017 ACS Appl. Mater. & Interfaces 9 1619
[37] Wu Z, Jiao L, Wang X, Guo D, Li W, Li L, Huang F and Tang W 2017 J. Mater. Chem. C 5 8688
[38] Ahn S, Ren F, Oh S, Jung Y, Kim J, Mastro M A, Hite J K, Eddy C R and Pearton S J 2016 J. Vac. Sci. & Technol. B 34 041207
[39] Nakagomi S, Momo T, Takahashi S and Kokubun Y 2013 Appl. Phys. Lett. 103 072105
[40] Nakagomi S, Sato T A, Takahashi Y and Kokubun Y 2015 Sensors Actuators A: Phys. 232 208
[41] Ai M, Guo D, Qu Y, Cui W, Wu Z, Li P, Li L and Tang W 2017 J. Alloys Compd. 692 634
[42] He T, Zhao Y, Zhang X, Lin W, Fu K, Sun C, Shi F, Ding X, Yu G, Zhang K, Lu S, Zhang X and Zhang B 2018 Nano Photon. 7 1557
[43] Lin R, Zheng W, Zhang D, Zhang Z, Liao Q, Yang L and Huang F 2018 ACS Appl. Mater. & Interfaces 10 22419
[44] Guo D Y, Shi H Z, Qian Y P, Lv M, Li P G, Su Y L, Liu Q, Chen K, Wang S L, Cui C, Li C R and Tang W H 2017 Semiconductor Sci. Technol. 32 03LT01
[45] Zhao B, Wang F, Chen H, Zheng L, Su L, Zhao D and Fang X 2017 Advanced Funct. Mater. 27 1700264
[46] Chen M, Zhao B, Hu G, Fang X, Wang H, Wang L, Luo J, Han X, Wang X, Pan C and Wang Z L 2018 Advanced Funct. Mater. 28 1706379
[1] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[2] A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer
Hsiang-Chun Wang(王祥骏), Yuheng Lin(林钰恒), Xiao Liu(刘潇), Xuanhua Deng(邓煊华),Jianwei Ben(贲建伟), Wenjie Yu(俞文杰), Deliang Zhu(朱德亮), and Xinke Liu(刘新科). Chin. Phys. B, 2023, 32(1): 018504.
[3] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[4] A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response
Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Mao-Lin Zhang(张茂林), Li-Li Yang(杨莉莉), Shan Li(李山), Zu-Yong Yan(晏祖勇), Shao-Hui Zhang(张少辉), Dao-You Guo(郭道友), Pei-Gang Li(李培刚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(8): 088503.
[5] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[6] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[7] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[8] Facile sensitizing of PbSe film for near-infrared photodetector by microwave plasma processing
Kangyi Zhao(赵康伊), Shuanglong Feng(冯双龙), Chan Yang(杨婵),Jun Shen(申钧), and Yongqi Fu(付永启). Chin. Phys. B, 2022, 31(3): 038504.
[9] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
[10] Study on a novel vertical enhancement-mode Ga2O3 MOSFET with FINFET structure
Liangliang Guo(郭亮良), Yuming Zhang(张玉明), Suzhen Luan(栾苏珍), Rundi Qiao(乔润迪), and Renxu Jia(贾仁需). Chin. Phys. B, 2022, 31(1): 017304.
[11] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[12] High-performance self-powered photodetector based on organic/inorganic hybrid van der Waals heterojunction of rubrene/silicon
Yancai Xu(徐彦彩), Rong Zhou(周荣), Qin Yin(尹钦), Jiao Li(李娇), Guoxiang Si(佀国翔), and Hongbin Zhang(张洪宾). Chin. Phys. B, 2021, 30(7): 077304.
[13] Deep-ultraviolet and visible dual-band photodetectors by integrating Chlorin e6 with Ga2O3
Yue Zhao(赵越), Jin-Hao Zang(臧金浩), Xun Yang(杨珣), Xue-Xia Chen(陈雪霞), Yan-Cheng Chen(陈彦成), Kai-Yong Li(李凯永), Lin Dong(董林), and Chong-Xin Shan(单崇新). Chin. Phys. B, 2021, 30(7): 078504.
[14] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[15] High-performing silicon-based germanium Schottky photodetector with ITO transparent electrode
Zhiwei Huang(黄志伟), Shaoying Ke(柯少颖), Jinrong Zhou(周锦荣), Yimo Zhao(赵一默), Wei Huang(黄巍), Songyan Chen(陈松岩), and Cheng Li(李成). Chin. Phys. B, 2021, 30(3): 037303.
No Suggested Reading articles found!