INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
1.3-μm InAs/GaAs quantum dots grown on Si substrates |
Fu-Hui Shao(邵福会)1,2, Yi Zhang(张一)1,2, Xiang-Bin Su(苏向斌)1,2, Sheng-Wen Xie(谢圣文)1,2, Jin-Ming Shang(尚金铭)1,2, Yun-Hao Zhao(赵云昊)3, Chen-Yuan Cai(蔡晨元)3, Ren-Chao Che(车仁超)3, Ying-Qiang Xu(徐应强)1,2, Hai-Qiao Ni(倪海桥)1,2, Zhi-Chuan Niu(牛智川)1,2 |
1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100083, China;
3 Laboratory of Advanced Materials, Department of Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials(iChEM), Fudan University, Shanghai 200433, China |
|
|
Abstract We compare the effect of InGaAs/GaAs strained-layer superlattice (SLS) with that of GaAs thick buffer layer (TBL) serving as a dislocation filter layer. The InGaAs/GaAs SLS is found to be more effective than GaAs TBL in blocking the propagation of threading dislocations, which are generated at the interface between the GaAs buffer layer and the Si substrate. Through testing and analysis, we conclude that the weaker photoluminescence for quantum dots (QDs) on Si substrate is caused by the quality of capping In0.15Ga0.85As and upper GaAs. We also find that the periodic misfits at the interface are related to the initial stress release of GaAs islands, which guarantees that the upper layers are stress-free.
|
Received: 14 August 2018
Revised: 26 September 2018
Accepted manuscript online:
|
PACS:
|
81.15.Hi
|
(Molecular, atomic, ion, and chemical beam epitaxy)
|
|
81.07.Ta
|
(Quantum dots)
|
|
83.85.St
|
(Stress relaxation ?)
|
|
85.35.Be
|
(Quantum well devices (quantum dots, quantum wires, etc.))
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0306101), the Scientific Instrument Developing Project of Chinese Academy of Sciences (Grant No. YJKYYQ20170032), and the National Natural Science Foundation of China (Grant Nos. 61790581, 61435012, and 61505196). |
Corresponding Authors:
Zhi-Chuan Niu
E-mail: zcniu@semi.ac.cn
|
Cite this article:
Fu-Hui Shao(邵福会), Yi Zhang(张一), Xiang-Bin Su(苏向斌), Sheng-Wen Xie(谢圣文), Jin-Ming Shang(尚金铭), Yun-Hao Zhao(赵云昊), Chen-Yuan Cai(蔡晨元), Ren-Chao Che(车仁超), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川) 1.3-μm InAs/GaAs quantum dots grown on Si substrates 2018 Chin. Phys. B 27 128105
|
[1] |
Liang D and Bowers J E 2010 Nat. Photon. 4 511
|
[2] |
Chen X, Li C and Tsang H K 2011 Npg Asia Mater. 3 34
|
[3] |
Jalali B and Fathpour S 2007 J. Lightwave Technol. 24 4600
|
[4] |
Park H, Fang A W, Cohen O, Jones R, Paniccia M J and Bowers J E 2007 IEEE Photon. Technol. Lett. 19 230
|
[5] |
Chen Q, Yang J W, Osinsky A, Gangopadhyay S, Lim B and Anwar M Z, Asif K M, K D, Temkin H 1997 Appl. Phys. Lett. 70 17
|
[6] |
Friesen M, Rugheimer P, Savage D E, Lagally M G, Weide D W, Joynt R and Eriksson M A 2002 Phys. Rev. B 67 121301
|
[7] |
Su X B, Ding Y, Ma B, Zhang K L, Chen Z S, Li J L, Cui X R, Xu Y Q, Ni H Q and Niu Z C 2018 Nanoscale Res. Lett. 13 59
|
[8] |
Wu J, Chen S, Seeds A and Liu H 2015 J. Phys. D: Appl. Phys. 48 363001
|
[9] |
Fischer R, Masselink W T, Klem J, Henderson T, Mcglinn T C, Klein M V, Morkc H, Mazur J H and Washburn J 1985 J. Appl. Phys. 58 374
|
[10] |
Balakrishnan G, Huang S, Dawson L R, Xin Y C, Conlin P and Huffaker D L 2005 Appl. Phys. Lett. 86 3
|
[11] |
Kim Y H, Lee J Y, Noh Y G, Kim M D, Cho S M, Kwon Y J and Oh J E 2006 Appl. Phys. Lett. 88 24
|
[12] |
Bringans R D, Biegelsen D K and Swartz L 1991 Phys. Rev. B 44 3054
|
[13] |
Wan Y, Norman J, Li Q, Kennedy M J, Liang D, Zhang C, Huang D, Zhang Z, Liu A Y, Torres A, Jung D, Arthur C G, Hu E L, Lau K M and Bowers J E 2017 Optica 4 940
|
[14] |
Chen S, Liao M, Tang M, Wu J, Martin M, Baron T, Seeds A and Liu H 2014 Optoelectronics Lett. 8 20
|
[15] |
Liu H, Wang T, Jiang Q, Hogg R, Tutu F, Pozzi F and Seeds A 2011 Nat. Photon. 5 416
|
[16] |
Lee A D, Jiang Q, Tang M, Zhang Y, Seeds A J and Liu H 2013 IEEE J. Sel. Top. Quantum Electron. 19 1901107
|
[17] |
Chen S, Tang M, Wu J, Jiang Q, Dorogan V G, Benamara M, Mazur Y I, Salamo G J, Seeds A and Liu H 2014 IEEE Semiconductor Laser Conference, September 7-10, 2014, Mallorca, Spain, p. 240
|
[18] |
Tang M, Wu, J, Chen S and Jiang Q 2015 IET Optoelectron. 9 61
|
[19] |
Liu A Y, Zhang C, Norman J, Snyder A, Lubyshev D, Fastenau J M, Liu A W K, Gossard A C and Bowers J E 2014 Appl. Phys. Lett. 104 4
|
[20] |
Tanabe K, Guimard D, Bordel D, Iwamoto S and Arakawa Y T 2010 Opt. Express 18 10604
|
[21] |
Guimard D, Tanabe K, Nomura M, Iwamoto S and Arakawa Y 2009 Opt. Express 17 7036
|
[22] |
Bordel D, Guimard D, Tanabe K, Iwamoto S and Arakawa Y 2010 Optics Express 18 10604
|
[23] |
Mi Z, Yang J, Bhattacharya P and Huffaker D L 2006 Electron. Lett. 42 121
|
[24] |
Okamoto H, Watanabe Y, Kadota Y and Ohmachi Y 1987 Jpn. J. Appl. Phys. 26 12
|
[25] |
George I, Becagli F, Liu H Y, Wu J, Tang M, Beanl and R 2015 Semicond. Sci. Technol. 30 114004
|
[26] |
Aizaki N and Tatsumi T 1986 Surf. Sci. 174 658
|
[27] |
Romanov A E, Pompe W, Beltz G and Speck J S 1996 Phys. Status Solidi 198 599
|
[28] |
Ward T, Sánchez A M, Tang M, Wu J, Liu H, Dunstan, D J, Beanl and R 2014 J. Appl. Phys. 116 6
|
[29] |
Chung J, Lian G and Rabenberg L 2010 IEEE Electron Dev. Lett. 31 854
|
[30] |
Hÿtch M J, Snoeck E and Kilaas R 1998 Ultramicroscopy 74 131
|
[31] |
Otsuka N, Choi C, Nakamura Y and Nagakura S 1986 Appl. Phys. Lett. 49 277
|
[32] |
Wang T, Lee A, Tutu F, Seeds A, Liu H, Jiang Q, Groom K and Hogg R 2012 Appl. Phys. Lett. 100 5
|
[33] |
Matthews J W 1975 Epitaxial Growth (New York: Elsevier Inc.) pp. 559-609
|
[34] |
Usui H, Yasuda H and Mori H 2006 Appl. Phys. Lett. 89 173127
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|