Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 128105    DOI: 10.1088/1674-1056/27/12/128105
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

1.3-μm InAs/GaAs quantum dots grown on Si substrates

Fu-Hui Shao(邵福会)1,2, Yi Zhang(张一)1,2, Xiang-Bin Su(苏向斌)1,2, Sheng-Wen Xie(谢圣文)1,2, Jin-Ming Shang(尚金铭)1,2, Yun-Hao Zhao(赵云昊)3, Chen-Yuan Cai(蔡晨元)3, Ren-Chao Che(车仁超)3, Ying-Qiang Xu(徐应强)1,2, Hai-Qiao Ni(倪海桥)1,2, Zhi-Chuan Niu(牛智川)1,2
1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100083, China;
3 Laboratory of Advanced Materials, Department of Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials(iChEM), Fudan University, Shanghai 200433, China
Abstract  

We compare the effect of InGaAs/GaAs strained-layer superlattice (SLS) with that of GaAs thick buffer layer (TBL) serving as a dislocation filter layer. The InGaAs/GaAs SLS is found to be more effective than GaAs TBL in blocking the propagation of threading dislocations, which are generated at the interface between the GaAs buffer layer and the Si substrate. Through testing and analysis, we conclude that the weaker photoluminescence for quantum dots (QDs) on Si substrate is caused by the quality of capping In0.15Ga0.85As and upper GaAs. We also find that the periodic misfits at the interface are related to the initial stress release of GaAs islands, which guarantees that the upper layers are stress-free.

Keywords:  quantum dots      dislocation filter      molecular beam epitaxy (MBE)      silicon photonics  
Received:  14 August 2018      Revised:  26 September 2018      Accepted manuscript online: 
PACS:  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
  81.07.Ta (Quantum dots)  
  83.85.St (Stress relaxation ?)  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0306101), the Scientific Instrument Developing Project of Chinese Academy of Sciences (Grant No. YJKYYQ20170032), and the National Natural Science Foundation of China (Grant Nos. 61790581, 61435012, and 61505196).

Corresponding Authors:  Zhi-Chuan Niu     E-mail:  zcniu@semi.ac.cn

Cite this article: 

Fu-Hui Shao(邵福会), Yi Zhang(张一), Xiang-Bin Su(苏向斌), Sheng-Wen Xie(谢圣文), Jin-Ming Shang(尚金铭), Yun-Hao Zhao(赵云昊), Chen-Yuan Cai(蔡晨元), Ren-Chao Che(车仁超), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川) 1.3-μm InAs/GaAs quantum dots grown on Si substrates 2018 Chin. Phys. B 27 128105

[1] Liang D and Bowers J E 2010 Nat. Photon. 4 511
[2] Chen X, Li C and Tsang H K 2011 Npg Asia Mater. 3 34
[3] Jalali B and Fathpour S 2007 J. Lightwave Technol. 24 4600
[4] Park H, Fang A W, Cohen O, Jones R, Paniccia M J and Bowers J E 2007 IEEE Photon. Technol. Lett. 19 230
[5] Chen Q, Yang J W, Osinsky A, Gangopadhyay S, Lim B and Anwar M Z, Asif K M, K D, Temkin H 1997 Appl. Phys. Lett. 70 17
[6] Friesen M, Rugheimer P, Savage D E, Lagally M G, Weide D W, Joynt R and Eriksson M A 2002 Phys. Rev. B 67 121301
[7] Su X B, Ding Y, Ma B, Zhang K L, Chen Z S, Li J L, Cui X R, Xu Y Q, Ni H Q and Niu Z C 2018 Nanoscale Res. Lett. 13 59
[8] Wu J, Chen S, Seeds A and Liu H 2015 J. Phys. D: Appl. Phys. 48 363001
[9] Fischer R, Masselink W T, Klem J, Henderson T, Mcglinn T C, Klein M V, Morkc H, Mazur J H and Washburn J 1985 J. Appl. Phys. 58 374
[10] Balakrishnan G, Huang S, Dawson L R, Xin Y C, Conlin P and Huffaker D L 2005 Appl. Phys. Lett. 86 3
[11] Kim Y H, Lee J Y, Noh Y G, Kim M D, Cho S M, Kwon Y J and Oh J E 2006 Appl. Phys. Lett. 88 24
[12] Bringans R D, Biegelsen D K and Swartz L 1991 Phys. Rev. B 44 3054
[13] Wan Y, Norman J, Li Q, Kennedy M J, Liang D, Zhang C, Huang D, Zhang Z, Liu A Y, Torres A, Jung D, Arthur C G, Hu E L, Lau K M and Bowers J E 2017 Optica 4 940
[14] Chen S, Liao M, Tang M, Wu J, Martin M, Baron T, Seeds A and Liu H 2014 Optoelectronics Lett. 8 20
[15] Liu H, Wang T, Jiang Q, Hogg R, Tutu F, Pozzi F and Seeds A 2011 Nat. Photon. 5 416
[16] Lee A D, Jiang Q, Tang M, Zhang Y, Seeds A J and Liu H 2013 IEEE J. Sel. Top. Quantum Electron. 19 1901107
[17] Chen S, Tang M, Wu J, Jiang Q, Dorogan V G, Benamara M, Mazur Y I, Salamo G J, Seeds A and Liu H 2014 IEEE Semiconductor Laser Conference, September 7-10, 2014, Mallorca, Spain, p. 240
[18] Tang M, Wu, J, Chen S and Jiang Q 2015 IET Optoelectron. 9 61
[19] Liu A Y, Zhang C, Norman J, Snyder A, Lubyshev D, Fastenau J M, Liu A W K, Gossard A C and Bowers J E 2014 Appl. Phys. Lett. 104 4
[20] Tanabe K, Guimard D, Bordel D, Iwamoto S and Arakawa Y T 2010 Opt. Express 18 10604
[21] Guimard D, Tanabe K, Nomura M, Iwamoto S and Arakawa Y 2009 Opt. Express 17 7036
[22] Bordel D, Guimard D, Tanabe K, Iwamoto S and Arakawa Y 2010 Optics Express 18 10604
[23] Mi Z, Yang J, Bhattacharya P and Huffaker D L 2006 Electron. Lett. 42 121
[24] Okamoto H, Watanabe Y, Kadota Y and Ohmachi Y 1987 Jpn. J. Appl. Phys. 26 12
[25] George I, Becagli F, Liu H Y, Wu J, Tang M, Beanl and R 2015 Semicond. Sci. Technol. 30 114004
[26] Aizaki N and Tatsumi T 1986 Surf. Sci. 174 658
[27] Romanov A E, Pompe W, Beltz G and Speck J S 1996 Phys. Status Solidi 198 599
[28] Ward T, Sánchez A M, Tang M, Wu J, Liu H, Dunstan, D J, Beanl and R 2014 J. Appl. Phys. 116 6
[29] Chung J, Lian G and Rabenberg L 2010 IEEE Electron Dev. Lett. 31 854
[30] Hÿtch M J, Snoeck E and Kilaas R 1998 Ultramicroscopy 74 131
[31] Otsuka N, Choi C, Nakamura Y and Nagakura S 1986 Appl. Phys. Lett. 49 277
[32] Wang T, Lee A, Tutu F, Seeds A, Liu H, Jiang Q, Groom K and Hogg R 2012 Appl. Phys. Lett. 100 5
[33] Matthews J W 1975 Epitaxial Growth (New York: Elsevier Inc.) pp. 559-609
[34] Usui H, Yasuda H and Mori H 2006 Appl. Phys. Lett. 89 173127
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[5] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[6] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[7] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[8] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[9] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[10] High efficiency, small size, and large bandwidth vertical interlayer waveguide coupler
Shao-Yang Li(李绍洋), Liang-Liang Wang(王亮亮), Dan Wu(吴丹), Jin You(游金), Yue Wang(王玥), Jia-Shun Zhang(张家顺), Xiao-Jie Yin(尹小杰), Jun-Ming An(安俊明), and Yuan-Da Wu(吴远大). Chin. Phys. B, 2022, 31(2): 024203.
[11] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[12] Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties
Zhen-Hua Li(李振华), Peng-Fei Shao(邵鹏飞), Gen-Jun Shi(施根俊), Yao-Zheng Wu(吴耀政), Zheng-Peng Wang(汪正鹏), Si-Qi Li(李思琦), Dong-Qi Zhang(张东祺), Tao Tao(陶涛), Qing-Jun Xu(徐庆君), Zi-Li Xie(谢自力), Jian-Dong Ye(叶建东), Dun-Jun Chen(陈敦军), Bin Liu(刘斌), Ke Wang(王科), You-Dou Zheng(郑有炓), and Rong Zhang(张荣). Chin. Phys. B, 2022, 31(1): 018102.
[13] Exciton emission dynamics in single InAs/GaAs quantum dots due to the existence of plasmon-field-induced metastable states in the wetting layer
Junhui Huang(黄君辉), Hao Chen(陈昊), Zhiyao Zhuo(卓志瑶), Jian Wang(王健), Shulun Li(李叔伦), Kun Ding(丁琨), Haiqiao Ni(倪海桥), Zhichuan Niu(牛智川), Desheng Jiang(江德生), Xiuming Dou(窦秀明), and Baoquan Sun(孙宝权). Chin. Phys. B, 2021, 30(9): 097805.
[14] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[15] Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure
Wei-Jiang Gong(公卫江), Yu-Hang Xue(薛宇航), Xiao-Qi Wang(王晓琦), Lian-Lian Zhang(张莲莲), and Guang-Yu Yi(易光宇). Chin. Phys. B, 2021, 30(7): 077307.
No Suggested Reading articles found!