Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 128104    DOI: 10.1088/1674-1056/27/12/128104
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Enhanced dielectric and optical properties of nanoscale barium hexaferrites for optoelectronics and high frequency application

J Mohammed1,2, A B Suleiman2, Tchouank Tekou Carol T1, H Y Hafeez2,3, Jyoti Sharma1, Pradip K Maji4, Sachin Godara Kumar5, A K Srivastava1
1 Department of Physics, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara-144411, Punjab, India;
2 Department of Physics, Faculty of Science, Federal University Dutse, P M B 7156, Dutse, Jigawa state, Nigeria;
3 SRM Research Institute, SRM University, Kattankulathur 603203, Chennai, India;
4 Department of Polymer and Processing Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur-247001, U P, India;
5 Department of Chemistry, Guru Nanak Dev University, Amritsa-143005, India
Abstract  

M-type barium hexaferrites with chemical composition Ba1-xDyxFe12-yCryO19 (x=0.0, 0.1, 0.2, and y=0.0, 0.4, 0.5) were synthesized via sol-gel auto-combustion method. The samples were pre-sintered at 400℃ for 3 h and sintered at 950℃ for 5 h. The changes in the structural, dielectric, and optical properties were studied after the substitution of Dy3+ and Cr3+ ions. X-ray diffraction (XRD) analysis confirms the formation of single phase hexaferrites with the absence of secondary phase. FTIR analysis gives an idea of the formation of hexaferrites with the appearance of two peaks at 438 cm-1 and 589 cm-1. The field emission scanning electron micrographs (FESEM) show a combination of crystallites with large shapes close to hexagonal platelet-like shape and others with rice or rod-like shapes, whereas EDX and elemental analysis confirm the stoichiometry of prepared samples. The calculated band gap from UV-vis NIR spectroscopy spectra was found to decreases with increase in Dy3+-Cr3+ substitution. The dielectric properties were explained on the basis of Maxwell-Wagner model. Enhancement of dielectric constant at higher frequencies was observed in all the samples. Low dielectric loss is also observed in all the samples and Cole-Cole plot shows that grain boundary resistance (Rgb) contribute most to the dielectric properties. The prepared samples exhibit properties that could be useful for optoelectronics and high frequency application.

Keywords:  Maxwell-Wagner model      dielectric constant      Cole-Cole plot      optical band-gap  
Received:  06 August 2018      Revised:  26 September 2018      Accepted manuscript online: 
PACS:  81.07.Bc (Nanocrystalline materials)  
  77.22.Gm (Dielectric loss and relaxation)  
  77.22.Ch (Permittivity (dielectric function))  
  77.22.-d (Dielectric properties of solids and liquids)  
Corresponding Authors:  A K Srivastava     E-mail:  srivastava_phy@yahoo.co.in

Cite this article: 

J Mohammed, A B Suleiman, Tchouank Tekou Carol T, H Y Hafeez, Jyoti Sharma, Pradip K Maji, Sachin Godara Kumar, A K Srivastava Enhanced dielectric and optical properties of nanoscale barium hexaferrites for optoelectronics and high frequency application 2018 Chin. Phys. B 27 128104

[1] Mohammed J, Suleiman A B, Hafeez H Y, Trudel T C T, Sharma J, Bhadu G R, Godara S K and Srivastava A K 2018 Mater. Res. Express 5 086106
[2] Sharma J, Mohammed J, Kaur R, Trudel T C T and Srivastava A K 2017 AIP Conf. Proc. 1860 020017
[3] Sharma J, Mohammed J, Trudel T C T and Srivastava A K 2017 AIP Conf. Proc. 1860 020016
[4] Sharma J, Basandrai D and Srivastava A K 2017 Chin. Phys. B 26 116201
[5] Basandrai D, Bedi R K, Dhami A, Sharma J, Narang S B, Pubby K and Srivastava A K 2017 Chin. Phys. Lett. 34 044101
[6] Ma Y, Zhai K, Yan L, Chai Y, Shang D and Sun Y 2018 Chin. Phys. B 27 027501
[7] Bahadur A, Saeed A, Iqbal S, Shoaib M, Ahmad I, Saif M, Bashir M I, Yaseen M and Hussain W 2017 Ceram. Int. 43 7346
[8] Ma X M, Liu J, Zhu S Z and Shi H G 2016 Chin. Phys. B 25 126102
[9] Trukhanov A, Panina L, Trukhanov S, Turchenko V and Salem M 2016 Chin. Phys. B 25 016102
[10] Mohammed J, Sharma J, Kumar S, Trudel T T C and Srivastava A K 2017 AIP Conf. Proc. 1860 020007
[11] Kaur T, Kumar S, Bhat B H and Srivastava A K 2015 J. Mater. Res. 30 2753
[12] Kaur T, Kumar S, Bhat B H, Want B and Srivastava A K 2015 Appl. Phys. A 119 1531
[13] Ashiq M N, Iqbal M J, Najamulhaq M, Gomez P H and Qureshi A M 2012 J. Magn. Magn. Mater. 324 15
[14] Kuruva P, Matli P R, Mohammad B, Reddigari S and Katlakunta S 2015 J. Magn. Magn. Mater. 382 172
[15] El-sayed S M, Meaz T M, Amer M A and El Shersaby H A 2013 Physica B: Condens. Matter 426 137
[16] Ashiq M N, Iqbal M J and Gul I H 2009 J. Alloys Compd. 487 341
[17] Kaur T, Sharma J, Kumar S and Srivastava A K 2017 Cryst. Res. Technol. 52 1700098
[18] Auwal I A, Güner S, Güngüne H and Baykal A 2016 Ceram. Int. 42 12995
[19] Kiani E, Rozatian A S H and Yousefi M H 2015 J. Magn. Magn. Mater. 361 25
[20] Nandi S K, Nath S K, Akther Hossain A K M and Khan J U 2014 J. Supercond. Nov. Magn. 27 2655
[21] Dhage V N, Mane M L, Keche A P, Birajdar C T and Jadhav K M 2011 Physica B: Condens. Matter 406 789
[22] Wagner T R 1998 J. Solid State Chem. 136 120
[23] Chawla S K, Mudsainiyan R K, Meena S S and Yusuf S M 2014 J. Magn. Magn. Mater. 350 23
[24] Kaur T, Kaur B, Bhat B H, Kumar S and Srivastava A K 2015 Physica B: Condens. Matter 456 206
[25] Kumar S, Kaur T, Kumar S and Srivastava A K 2015 J. Supercond. Nov. Magn. 28 2935
[26] Nikmanesh H, Moradi M, Bordbar G H and Alam R S 2016 Ceram. Int. 42 14342
[27] Baniasadi A, Ghasemi A, Nemati A, Ghadikolaei M A and Paimozd E 2014 J. Alloys Compd. 583 325
[28] Rostami M, Moradi M, Alam R S and Mardani R 2016 Mater. Res. Bull. 83 379
[29] R S Alam, Moradi M, Rostami M, Nikmanesh H, Moayedi R and Bai Y 2015 J. Magn. Magn. Mater. 381 1
[30] Asiri S, Güner S, Korkmaz A D, Amir M, Batoo K M, Almessiere M A, Gungunes H, Sözeri H and Baykal A 2018 J. Magn. Magn. Mater. 451 463
[31] Meena R S, Bhattachrya S and Chatterjee R 2010 Mater. Sci. Eng. B 171 133
[32] Meena R S, Bhattachrya S and Chatterjee R 2010 J. Magn. Magn. Mater. 322 2908
[33] Ali I, Ahmad M, Islam M U and Awan M S 2013 J. sol-gel Sci. Technol. 68 141
[34] Bhargava R and Khan S 2017 Adv. Powder Technol. 28 2812
[35] Heczko O, Gerber R and Simsa Z 2000 Thin Solid Films 358 206
[36] Elghanem H M, Jawad S A, Aljundi J, Afaneh F and Arafa I 2003 Polym. Int. 52 1125
[37] Odeh I, El Ghanem H M, Mahmood S H, Azzam S, Bsoul I and Lehlooh A F 2016 Physica B: Condens. Matter 494 33
[38] Khare A, Sundar S, Mandal K D and Mukhopadhyay N K 2016 Microelectron. Eng. 164 1
[39] Ashiq M N, Qureshi R B, Malana M A and Ehsan M F 2015 J. Alloys Compd. 651 266
[40] Narang S B, Kaur D and Pubby K 2016 Microw. Opt. Technol. Lett. 58 1679
[41] Jassal A K, Mudsainiyan R K, Chawla S K, Anu, Narang S B and Pubby K 2018 J. Magn. Magn. Mater. 447 32
[42] Thongbai P, Jumpatam J, Putasaeng B, Yamwong T and Maensiri S 2014 Mater. Res. Bull. 60 695
[43] Soman V V, Nanoti V M and Kulkarni D K 2013 Ceram. Int. 39 5713
[44] Lalegani Z and Nemati A 2015 J. Mater. Sci.: Mater. Electron. 26 2134
[45] Ali I, Islam M U, Awan M S and Ahmad M 2013 J. Mater. Eng. Perform. 22 2104
[46] Hooda A, Sanghi S, Agarwal A and Dahiya R 2015 J. Magn. Magn. Mater. 387 46
[47] Want B, Bhat B H and Ahmad B Z 2014 J. Alloys Compd. 627 78
[48] Pubby K, Chawla S K, Kaur P, Kaur G and Bindra S B 2016 Ferroelectrics 505 67
[49] Pubby K, Narang S B, Chawla S K and Mudsainiyan R K 2016 J. Mater. Sci. Mater. Electron. 27 11220
[50] Malana M A, Qureshi R B, Ashiq M N and Ehsan M F 2016 Ceram. Int. 42 2686
[1] Microwave-assisted synthesis of Mg:PbI2 nanostructures and their structural, morphological, optical, dielectric and electrical properties for optoelectronic technology
Mohd. Shkir, Ziaul Raza Khan, T Alshahrani, Kamlesh V. Chandekar, M Aslam Manthrammel, Ashwani Kumar, and S AlFaify$. Chin. Phys. B, 2020, 29(11): 116102.
[2] Effective dielectric constant model of electromagnetic backscattering from stratified air-sea surface film-sea water medium
Tao Xie(谢涛), William Perrie, He Fang(方贺), Li Zhao(赵立), Wen-Jin Yu(于文金), Yi-Jun He(何宜军). Chin. Phys. B, 2017, 26(5): 054102.
[3] Band gaps structure and semi-Dirac point of two-dimensional function photonic crystals
Si-Qi Zhang(张斯淇), Jing-Bin Lu(陆景彬), Yu Liang(梁禺), Ji Ma(马季), Hong Li(李宏), Xue Li(李雪), Xiao-Jing Liu(刘晓静), Xiang-Yao Wu(吴向尧), Xiang-Dong Meng(孟祥东). Chin. Phys. B, 2017, 26(2): 024208.
[4] Modulation and control of DNA charge inversion
Yan-Wei Wang(王艳伟), Guang-Can Yang(杨光参). Chin. Phys. B, 2017, 26(12): 128706.
[5] Nonlinear parametric interactions in ion-implanted semiconductor plasmas having strain-dependent dielectric constants
N Yadav, S Ghosh, P S Malviya. Chin. Phys. B, 2017, 26(1): 015203.
[6] Magnetoelectric effect in multiferroic NdMn2O5
Syed Hamad Bukhari, Javed Ahmad. Chin. Phys. B, 2017, 26(1): 018103.
[7] Improvement of sintering, nonlinear electrical, and dielectric properties of ZnO-based varistors doped with TiO2
Osama A Desouky, K E Rady. Chin. Phys. B, 2016, 25(6): 068402.
[8] Alternating current characterization of nano-Pt(II) octaethylporphyrin (PtOEP) thin film as a new organic semiconductor
M Dongol, M M El-Nahass, A El-Denglawey, A A Abuelwafa, T Soga. Chin. Phys. B, 2016, 25(6): 067201.
[9] Influences of different structures on the characteristics of H2O-based and O3-based LaxAlyO films deposited by atomic layer deposition
Chen-Xi Fei(费晨曦), Hong-Xia Liu(刘红侠), Xing Wang(汪星), Dong-Dong Zhao(赵冬冬), Shu-Long Wang(王树龙), Shu-Peng Chen(陈树鹏). Chin. Phys. B, 2016, 25(5): 058106.
[10] Preparation and piezoelectric properties of potassium sodium niobate glass ceramics
Jiang Shan (姜珊), Wang Xuan-Ming (王炫明), Li Jia-Yu (李佳宇), Zhang Yong (张勇), Zheng Tao (郑涛), Lv Jing-Wen (吕景文). Chin. Phys. B, 2015, 24(6): 067701.
[11] Al-doping-induced magnetocapacitance in the multiferroic AgCrS2
Liu Rong-Deng (刘荣灯), He Lun-Hua (何伦华), Yan Li-Qin (闫丽琴), Wang Zhi-Cui (王志翠), Sun Yang (孙阳), Liu Yun-Tao (刘蕴韬), Chen Dong-Feng (陈东风), Zhang Sen (张森), Zhao Yong-Gang (赵永刚), Wang Fang-Wei (王芳卫). Chin. Phys. B, 2015, 24(12): 127507.
[12] Formation of ZnGa2O4 films by multilayer deposition and subsequent thermal annealing
Yan Jin-Liang (闫金良), Zhao Yin-Nü (赵银女), Li Chao (李超). Chin. Phys. B, 2014, 23(4): 048105.
[13] Infrared emissivities of Mn, Co co-doped ZnO powders
Yao Yin-Hua (姚银华), Cao Quan-Xi (曹全喜). Chin. Phys. B, 2012, 21(12): 124205.
[14] Improved multiferroic properties of La-doped 0.6BiFeO3–0.4SrTiO3 solid solution ceramics
Ma Zheng-Zheng (马争争), Li Jian-Qing (李建青), Tian Zhao-Ming (田召明), Qiu Yang (邱洋), Yuan Song-Liu (袁松柳). Chin. Phys. B, 2012, 21(10): 107503.
[15] Electromechanical-induced antiferroelectric–ferroelectric phase transition in PbLa(Zr,Sn,Ti)O3 ceramic
Zhang Chong-Hui(张崇辉), Xu Zhuo(徐卓), Gao Jun-Jie(高俊杰), Zhu Chang-Jun(朱长军), and Yao Xi(姚熹) . Chin. Phys. B, 2011, 20(9): 097702.
No Suggested Reading articles found!