INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Large magnetic moment at sheared ends of single-walled carbon nanotubes |
Jian Zhang(张健)1,4, Ya Deng(邓娅)1,4, Ting-Ting Hao(郝婷婷)2, Xiao Hu(胡潇)1,4, Ya-Yun Liu(刘雅芸)1,4, Zhi-Sheng Peng(彭志盛)3, Jean Pierre Nshimiyimana1,4, Xian-Nian Chi(池宪念)1,4, Pei Wu(武佩)1,4, Si-Yu Liu(刘思雨)3, Zhong Zhang(张忠)1, Jun-Jie Li(李俊杰)2, Gong-Tang Wang(王公堂)3, Wei-Guo Chu(褚卫国)1, Chang-Zhi Gu(顾长志)2, Lian-Feng Sun(孙连峰)1 |
1 CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China;
2 Institute of Physics, Chinese Academy of Sciences(CAS), Beijing 100190, China;
3 School of Physics and Electronics, Shandong Normal University, Jinan 250014, China;
4 University of Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract In this work we report that after single-walled carbon nanotubes (SWNTs) are sheared with a pair of titanium scissors, the magnetization becomes larger than that of the corresponding pristine ones. The magnetization increases proportionally with the number of SWNTs with sheared ends, suggesting that there exist magnetic moments at the sheared ends of SWNTs. By using the coefficient of this linear relation, the average magnetic moment is estimated to be 41.5±9.8 μB (Bohr magneton) per carbon atom in the edge state at temperature of 300.0 K, suggesting that ultrahigh magnetic fields can be produced. The dangling sigma and pi bonds of the carbon atoms at sheared ends play important roles in determining the unexpectedly high magnetic moments, which may have great potential applications.
|
Received: 31 May 2018
Revised: 18 September 2018
Accepted manuscript online:
|
PACS:
|
81.05.U-
|
(Carbon/carbon-based materials)
|
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
75.60.-d
|
(Domain effects, magnetization curves, and hysteresis)
|
|
81.70.Pg
|
(Thermal analysis, differential thermal analysis (DTA), differential thermogravimetric analysis)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0208403 and 2016YFA0200403), the National Natural Science Foundation of China (Grant Nos. 51472057, 11874129, 91323304, and 11674387), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09040101), and the Baotou Rare Earth Research and Development Centre, Chinese Academy of Sciences (Grant No. GZR 2018001). |
Corresponding Authors:
Jian Zhang, Ya Deng, Lian-Feng Sun
E-mail: wanggt@sdnu.edu.cn;wgchu@nanoctr.cn;slf@nanoctr.cn
|
Cite this article:
Jian Zhang(张健), Ya Deng(邓娅), Ting-Ting Hao(郝婷婷), Xiao Hu(胡潇), Ya-Yun Liu(刘雅芸), Zhi-Sheng Peng(彭志盛), Jean Pierre Nshimiyimana, Xian-Nian Chi(池宪念), Pei Wu(武佩), Si-Yu Liu(刘思雨), Zhong Zhang(张忠), Jun-Jie Li(李俊杰), Gong-Tang Wang(王公堂), Wei-Guo Chu(褚卫国), Chang-Zhi Gu(顾长志), Lian-Feng Sun(孙连峰) Large magnetic moment at sheared ends of single-walled carbon nanotubes 2018 Chin. Phys. B 27 128101
|
[1] |
Lai D 2001 Rev. Mod. Phys. 73 629
|
[2] |
Klitzing K, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494
|
[3] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, DubonosS V and Firsov A A 2005 Nature 438 197
|
[4] |
TsuiD C, Stormer H L and Gossard A C 1982 Phys. Rev. Lett. 48 1559
|
[5] |
Yu R, ZhangW, Zhang H, Zhang S, Dai X and Fang Z 2010 Science 329 61
|
[6] |
Qi Y, Lv S, Du A and Yu N 2016 Chin. Phys. B 25 117501
|
[7] |
Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167
|
[8] |
Lange K K, Tellgren E I, Hoffmann M R and Helgaker T 2012 Science 337 327
|
[9] |
SaliliS M, Tamba M G, Sprunt S N, Welch C, Mehl G H, Jákli A, Gleeson J and T 2016 Phys. Rev. Lett. 116 217801
|
[10] |
Haravifard S, Graf D, Feiguin A E, Batista C D, Lang J C, Silevitch D M, Srajer G, Gaulin H, Dabkowska A and Rosenbaum T F 2016 Nat. Commun. 7 11956
|
[11] |
Lauterbur P C 1973 Nature 242 190
|
[12] |
Shou Q Y, Feng L, Long Y, Han J, Nunnery J K, Powell D H and Butcher R A 2016 Nat. Chem. Biol. 12 770
|
[13] |
Weijers H W, Markiewicz W D, Gavrilin A V, Voran A J, Viouchkov Y L, Gundlach S R, Noyes P D, Abraimov D V, Bai H, Hannahs S T and Murphy T P 2016 IEEE Trans. Appl. Supercond. 264 300807
|
[14] |
JilesD C 2015 Introduction to Magnetism and Magnetic Materials (London: CRC Press)
|
[15] |
Feynman R P 1964 The Feynman Lectures on Physics (Leighton, Robert B.; Sands Matthew)
|
[16] |
Zhang J, Liu S, Nshimiyimana J P, Deng Y, Hou G, Chi X, Hu X, Zhang Z, Wu P, Wang G, Chu W and Sun L 2017 Small 13 1701218
|
[17] |
Yu M F, Lourie O, Dyer M J, Moloni K, Kelly T F and Ruoff R S 2000 Science 287 637
|
[18] |
Nakada K, Fujita M, Dresselhaus G and Dresselhaus M S 1996 Phys. Rev. B 54 17954
|
[19] |
Shi Z J, Lian Y, Liao F, Zhou X, Gu Z, Zhang Y and Iijima S 1999 Solid State Commun. 112 35
|
[20] |
Choucair M, Tse N M K, Hill M R and Stride J A 2012 Surf. Sci. 606 34
|
[21] |
Zhu X Y, Lee S M, Lee Y H and Frauenheim T 2000 Phys. Rev. Lett. 85 2757
|
[22] |
Han K H, Spemann D, Esquinazi P, Hohne R, Riede V and Butz T 2003 Adv. Mater. 15 1719
|
[23] |
Ohldag H, Tyliszczak T, Höhne R, Spemann D, Esquinazi P, Ungureanu M and Butz T 2007 Phys. Rev. Lett. 98 187204
|
[24] |
Cervenka J, Katsnelson M I and Flipse C F J 2009 Nat. Phys. 5 840
|
[25] |
Wang Y, Huang Y, Song Y, Zhang X, Ma Y, Liang J and Chen Y 2009 Nano Lett. 9 220
|
[26] |
Zhou P and He D W 2016 Chin. Phys. B 25 017302
|
[27] |
GonzalezHerrero H, GómezRodríguez J M, Mallet P, Moaied M, Palacios J J, Salgado C, Ugeda M M, Veuillen J V, Yndurain F and Brihuega I 2016 Science 352 437
|
[28] |
Wang G, Chen M, Yu F, Xue L, Deng Y, Zhang J, Qi X, Gao Y, Chu W, Liu G, Yang H, Gu C and Sun L 2015 Chin. Phys. B 24 016202
|
[29] |
Zhang Y, Li S Y, Huang H, Li W T, Qiao J B, Wang W X, Yin L J, Bai K K, Duan W and He L 2016 Phys. Rev. Lett. 117 166801
|
[30] |
Kim P, Odom T W, Huang J L and Lieber C M 1999 Phys. Rev. Lett. 82 1225
|
[31] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
|
[32] |
Yang F, Wang X, Zhang D, Yang J, Luo D, Xu Z, Wei J, Wang J, Xu Z, Peng F, Li X, Li R, Li Y, Li M, Bai X, Ding F and Li Y 2014 Nature 510 522
|
[33] |
Wei Q, Wei Z, Ren L, Zhao H, Ye T, Shi Z, Fu Y, Zhang X and Huang R 2012 Chin. Phys. B 21 088103
|
[34] |
Zhang J, Deng Y, Hu X, Nshimiyimana J P, Liu S, Chi X, Wu P, Dong F, Chen P, Chu W and Sun L 2018 Adv. Sci. 5 1700588
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|