Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 075101    DOI: 10.1088/1674-1056/abf351
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Effect of the particle temperature on lift force of nanoparticle in a shear rarefied flow

Jun-Jie Su(苏俊杰), Jun Wang(王军), and Guo-Dong Xia(夏国栋)
MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Beijing Key Laboratory of Heat Transfer and Energy Conversion, Beijing University of Technology, Beijing 100124, China
Abstract  The nanoparticles suspended in a shear flow are subjected to a shear lift force, which is of great importance for the nanoparticle transport. In previous theoretical analysis on the shear lift, it is usually assumed that the particle temperature is equal to the temperature of the surrounding gas media. However, in some particular applications, the particle temperature can significantly differ from the gas temperature. In the present study, the effect of particle temperature on the shear lift of nanoparticles is investigated and the corresponding formulas of shear lift force are derived based on the gas kinetic theory. For extremely small nanoparticles (with radius R<2 nm) or large nanoparticles (R>20 nm), the influence of the particle temperature can be neglected. For the intermediate particle size, the relative error induced by the equal gas-particle temperature can be significant. Our findings can bring an insight into accurate evaluation of the nanoparticle transport properties.
Keywords:  shear lift force      nanoparticle      temperature effect      gas kinetic theory  
Received:  23 February 2021      Revised:  22 March 2021      Accepted manuscript online:  30 March 2021
PACS:  51.10.+y (Kinetic and transport theory of gases)  
  34.20.-b (Interatomic and intermolecular potentials and forces, potential energy surfaces for collisions)  
  47.45.Dt (Free molecular flows)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51776007), Beijing Nova Program of Science and Technology (Grant No. Z191100001119033), and the Youth Talent Support Program of Beijing Municipal Education Committee (Grant No. CIT&TCD201904015).
Corresponding Authors:  Jun Wang     E-mail:  jwang@bjut.edu.cn

Cite this article: 

Jun-Jie Su(苏俊杰), Jun Wang(王军), and Guo-Dong Xia(夏国栋) Effect of the particle temperature on lift force of nanoparticle in a shear rarefied flow 2021 Chin. Phys. B 30 075101

[1] Binder S, Glatthaar M and Rdlein E 2014 Aerosol Sci. Technol. 48 924
[2] Huang J W, Kao Y M, Chiu P W, Wu T H and Lee Y C 2021 J. Nanopart. Res. 23 25
[3] Zhang Y, Li S, Yan W and Yao Q 2012 Powder Technol. 227 24
[4] Li S, Ren Y, Biswas P and Stephen D T 2016 Prog. Energy Combust Sci. 55 1
[5] Salmanzadeh M, Zahedi G, Ahmadi G, Marr D R and Glauser M 2012 J. Aerosol Sci. 53 29
[6] Brouwer D H, Duuren-Stuurman B V, Berges M, Bard D, Jankowska E, Moehlmann C, Pelzer J and Mark D 2013 J. Nanopart. Res. 15 2090
[7] Li R N, Da X H, Li X, Lu Y S, Gu F F and Liu Y 2021 Chin. Phys. B 30 017502
[8] Koullapis P, Kassinos S C, Muela J, Perez-Segarra C, Rigola J, Lehmkuhl O, Cui Y, Sommerfeld M, Elcner J, Jicha M, Saveljic I, Filipovic N, Lizal F and Nicolaou L 2018 Eur. J. Pharm. Sci. 113 77
[9] Poiseuille J L M 1836 Ann. Sci. Nat. Strie. 5 111
[10] Saffman P G 1965 J. Fluid Mech. 22 385
[11] McLaughlin J B 1991 J. Fluid Mech. 224 261
[12] Bagchi P and Balachandar S 2002 Phys. Fluids 14 2719
[13] Liu N and Bogy D B 2008 Phys. Fluids 20 107102
[14] Liu N and Bogy D B 2009 Phys. Fluids 21 047102
[15] Crowe C T, Schwarzkopf J D, Sommerfeld M and Tsuji Y 2011 Multiphase flows with droplets and particles (Boca Raton: CRC Press)
[16] Luo S, Wang J, Xia G and Li Z 2016 J. Fluid Mech. 795 443
[17] Zhong W, Yu A, Liu X, Tong Z and Zhang H 2016 Powder Technol. 302 108
[18] Chapman S and Cowling T G 1970 The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases (London: Cambridge University Press)
[19] Sun X and Dong Y 2006 Chin. Phys. Lett. 23 2494
[20] Alam M K 1987 Aerosol Sci. Technol. 6 41
[21] Zhang Y, Xu A, Qiu J, Wei H and Wei Z 2020 Front. Phys. 15 62503
[22] Sander S, Gawor S and Fritsching U 2018 Particuology 38 10
[23] Li Z and Wang H 2003 Phys. Rev. E 68 061206
[24] Li Z and Wang H 2004 Phys. Rev. E 70 021205
[25] Wang J and Li Z 2012 Phys. Rev. E 86 011201
[26] Luo S, Wang J, Yu S, Xia G and Li Z 2018 J. Fluid Mech. 846 392
[27] Rajput N 2015 IJAET 7 1806
[28] Thiesen B and Jordan A 2008 Int. J. Hyperthermia 24 467
[29] Bobo D, Robinson K J, Islam J, Thurecht K J and Corrie S R 2016 Pharm. Res. 33 2373
[30] Li T, Kheifets S and Raizen M G 2011 Nat. Phys. 7 527
[31] Yuan Y, Li S, Xu Y and Yao Q 2017 Fuel 201 93
[32] Xi Q, Li Y, Zhou J, Li B and Liu J 2019 Int. J. Mod. Phys. C 30 1950024
[33] Chernyak V G and Sograbi T V 2018 J. Aerosol Sci. 128 62
[34] Wang J, Su J and Xia G 2020 Phys. Rev. E 10 013103
[35] Loesche C, Wurm G, Jankowski T and Kuepper M 2016 J. Aerosol Sci. 97 22
[36] Loesche C and Husmann T 2016 J. Aerosol Sci. 102 55
[37] Bird G A 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows (London: Oxford University Press)
[38] Wang C, Friedlander S K and Mädler L 2005 China Particuol. 3 243
[39] Gieseler J, Deutsch B, Quidant R and Novotny L 2012 Phys. Rev. Lett. 109 103603
[40] Mädler L and Friedlander S K 2007 Aerosol Air Qual. Res. 7 304
[41] Hirschfelder J O, Curtiss C F and Bird R B 1954 Molecular Theory of Gases and Liquids (New York: John Wiley and Sons)
[42] Li Z and Wang H 2003 Phys. Rev. E 68 061207
[43] Millikan R A 1923 Phys. Rev. 21 217
[44] Millikan R A 1923 Phys. Rev. 22 1
[45] Wang H 2009 Ann. N. Y. Acad. Sci. 1161 484
[46] Liu C and Wang H 2019 Phys. Rev. E 99 042127
[47] Rudyak V Y, Krasnolutskii S L, Nasibulin A G and Kauppinen E 2002 Dokl. Phys. 47 758
[48] Wong R Y M, Liu C, Wang J, Chao C Y H and Li Z 2012 J. Nanosci. Nanotechnol. 12 2311
[49] Agrawal P M, Rice B M and Thompson D L 2002 Surf. Sci. 515 21
[50] Hippler H, Troe J and Wendelken H J 1983 J. Chem. Phys. 78 6709
[51] Wang Y, Liu Y and Zhang L 2019 Acta Phys. Sin. 68 166402 (in Chinese)
[1] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[2] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[3] Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model
Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰). Chin. Phys. B, 2022, 31(8): 086104.
[4] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[5] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[6] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[7] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[8] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[9] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[10] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[11] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[12] Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles
Hui-Fang Wang(王慧芳), Chun-Rong Li(李春蓉), Min-Na Sun(孙敏娜), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军). Chin. Phys. B, 2022, 31(4): 048703.
[13] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[14] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[15] Palladium nanoparticles/wool keratin-assisted carbon composite-modified flexible and disposable electrochemical solid-state pH sensor
Wenli Zhang(张文立), Xiaotian Liu(刘笑天), Youhui Lin(林友辉), Liyun Ma(马利芸), Linqing Kong(孔令庆), Guangzong Min(闵光宗), Ronghui Wu(吴荣辉), Sharwari K. Mengane, Likun Yang(杨丽坤), Aniruddha B. Patil, and Xiang Yang Liu(刘向阳). Chin. Phys. B, 2022, 31(2): 028201.
No Suggested Reading articles found!