Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 128102    DOI: 10.1088/1674-1056/27/12/128102
Special Issue: TOPICAL REVIEW — Photodetector: Materials, physics, and applications
TOPICAL REVIEW—Photodetector: materials, physics, and applications Prev   Next  

Short-wave infrared InGaAs photodetectors and focal plane arrays

Yong-Gang Zhang(张永刚)1,2, Yi Gu(顾溢)1,2, Xiu-Mei Shao(邵秀梅)1, Xue Li(李雪)1, Hai-Mei Gong(龚海梅)1, Jia-Xiong Fang(方家熊)1
1 Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;
2 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
Abstract  

In this article, unique spectral features of short-wave infrared band of 1 μ-3 μm, and various applications related to the photodetectors and focal plane arrays in this band, are introduced briefly. In addition, the different material systems for the devices in this band are outlined. Based on the background, the development of lattice-matched and wavelength-extended InGaAs photodetectors and focal plane arrays, including our continuous efforts in this field, are reviewed. These devices are concentrated on the applications in spectral sensing and imaging, exclusive of optical fiber communication.

Keywords:  InGaAs      short-wave infrared      photodetectors      focal plane arrays  
Received:  06 September 2018      Revised:  21 September 2018      Accepted manuscript online: 
PACS:  81.05.Ea (III-V semiconductors)  
  85.60.Dw (Photodiodes; phototransistors; photoresistors)  
  72.40.+w (Photoconduction and photovoltaic effects)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0402400), the National Natural Science Foundation of China (Grant Nos. 61675225, 61605232, and 61775228), and the Shanghai Rising-Star Program, China (Grant No. 17QA1404900).

Corresponding Authors:  Yong-Gang Zhang     E-mail:  ygzhang@mail.sim.ac.cn

Cite this article: 

Yong-Gang Zhang(张永刚), Yi Gu(顾溢), Xiu-Mei Shao(邵秀梅), Xue Li(李雪), Hai-Mei Gong(龚海梅), Jia-Xiong Fang(方家熊) Short-wave infrared InGaAs photodetectors and focal plane arrays 2018 Chin. Phys. B 27 128102

[1] Rogalski A 2001 Proc. SPIE 4355 1
[2] Zhang Y G, Zhou P, Chen H Y and Pan H Z 1990 Chin. J. Rare Met. 9 48
[3] Zhang Y G, Zhou P, Shan H K and Pan H Z 1992 Chin. J. Semicond. 13 623
[4] Afrailov M A 2010 Infrared Phys. & Technol. 53 29
[5] Piotrowski T T, Piotrowska A, Kaminska E, Piskorski M, Papis Golaszewska E K, KtCki J, Ratajczak J, Adamczewsk J, Wawro A, Piotrowski J, Orman Z, Paw1uczyk J and Nowak Z 2001 Proc. SPIE 4413 339
[6] Bhagwat V, Xiao Y G, Bhat I, Dutta P, Refaat T F, Abedin N and Kumar V 2006 J. Electron. Mater. 35 1613
[7] Li A Z, Zhong J Q, Zheng Y L, Wang J X, Ru G P, Bi W G and Qi M 1995 J. Cryst. Growth. 150 1375
[8] Liang B L, Chen D Y, Wang B, Kwasniewski T A and Wang Z G 2010 IEEE Trans. Electron. Dev. 57 361
[9] Sun Y Y, Han X, Hao H Y, Jiang D W, Guo C Y, Jiang Z, Lv Y X, Wang G W, Xu Y Q and Niu Z C 2017 Infrared Phys. & Technol. 82 140
[10] Cohen-Elias D, Uliel Y, Klin O, Snapi N, Weiss E, Shafir I, Westreich O and Katz M 2017 Infrared Phys. & Technol. 84 82
[11] Pearsall T P and Hopson R W 1977 J. Appl. Phys. 48 4407
[12] Pearsall T P 1978 J. Electron. Mater. 7 133
[13] Onat B M, Huang W, Masauna N, Lange M, Ettenberg M H and Driesa C 2007 Proc. SPIE 6542 65420L
[14] Li X, Tang H J, Fan G Y, Liu D F, Shao X M, Zhang Y G, Zhang H Y, Chen X Y, Zhu S G, Gong H M and Fang J X 2007 Proc. SPIE 6835 683505
[15] MacDougal M, Geske J, Wang C, Liao S R, Getty J and Holmes A 2009 Proc. SPIE 7298 72983F
[16] Rouvié A, Reverchon J L, Huet O, Djedidi A, Robo J A, Truffer J P, Bria T, Pires M, Decobert J and Costard E 2012 Proc. SPIE 8353 835308
[17] Rouvié A, Huet O, Hamard S, Truffer J P, Pozzi M, Decobert J, Costard E, Zécri M, Maillart P, Reibel Y and Pécheur A 2013 Proc. SPIE 8704 880403
[18] Rouvié A, Coussement J, Huet O, Truffer J P, Pozzi M, Oubensaid E H, Hamard S, Chaffraix V and Costard E 2015 Proc. SPIE 9451 945105
[19] Li X, Tang H J, Huang S L, Shao X M, Li T, Huang Z C and Gong H M 2014 Proc. SPIE 9220 92200B
[20] Rutz F, Kleinow P, Aidam R, Heussen H, Bronner W, Sieck A and Walther M 2015 Proc. SPIE 9481 948107
[21] MacDougal M, Hood A, Geske J, Wang J, Patel F, Follman D, Manzo J and Getty J 2011 Proc. SPIE 8012 801221
[22] Yuan P, Chang J, Boisvert J C and Karam N 2014 Proc. SPIE 9070 907007
[23] Fraenkel R, Berkowicz E, Bykov L, Dobromislin R, Elishkov R, Giladi A, Grimberg I, Hirsh I, Ilan E, Jacobson C, Kogan I, Kondrashov P, Nevo I, Pivnik I and Vasserman S 2016 Proc. SPIE 9819 981903
[24] Shao X M, Yang B, Huang S L, Wei Y, Li X, Zhu X L, Li T, Chen Y and Gong H M 2017 Proc. SPIE 10404 104040D
[25] Anchlia A, Vinella R M, Gielen D, Wouters K, Vervenne V, Hooylaerts P, Deroo P, Ruythooren W, De Gaspari D, Das J and Merken P 2016 Proc. SPIE 9819 981907
[26] Song K, Lei J F, Petersen A, Yuan H, Kim J, Kimchi J, Douence V, Starr B, Sundareswaran V and Beletic J W 2018 Proc. SPIE 10656 106560K
[27] Tang H J, Li X, Wang Y J, Duan W B, Shao X M and Gong H M 2014 Proc. SPIE 8982 898229
[28] Itzler M A, Entwistle M, Owens M, Patel K, Jiang X D, Slomkowski K, Rangwala S, Zalud P F, Senko T, Tower J and Ferraro J 2011 Proc. SPIE 8033 80330G
[29] Baba T, Suzuki Y, Makino K, Fujita T, Hashi T, Adachi S, Nakamura S and Yamamoto K 2018 Proc. SPIE 10540 105400L
[30] Islam M, Feng J Y, Berkovich A, Abshire P, Barrows G and Choa F S 2016 Proc. SPIE 9819 98190G
[31] Kim Y H, Lee B W, Ko S Y, Ha C S and Jung H 2018 Proc. SPIE 10624 106241T
[32] Deng H H, Shao H B, Yang B, Huang J, Wang Z L, Li X, Shao X M and Gong H M 2017 Proc. SPIE 10462 1046232
[33] Huang X, Li Tao, Shao X M, Li X and Gong H M 2013 Proc. SPIE 8907 890751
[34] Shao X M, Zhu Y M, Li X, Tang H J, Li T and Gong H M 2014 Proc. SPIE 9220 92200A
[35] Zhu X L, Zhang H Y, Li X, Huang Z C and Mei H 2017 Proc. SPIE 10404 104040E
[36] Mo D F, Liu D F, Yang L Y, Xu Q F and Li X 2013 Proc. SPIE 8907 89073T
[37] Joshi A M and Datta S 2018 Proc. SPIE 10641 106410K
[38] Zhang Y G and Gu Y 2011 Advances in Photodiodes, Chapter 17 (Rijeka, Croatia: InTech) pp. 349-376
[39] Martinelli R U, Zamerowski T J and Longeway P A 1988 Appl. Phys. Lett. 53 989
[40] Makita K, Torikai T, Ishihara H and Taguthi K 1988 Electron. Lett. 24 379
[41] Forte-Poisson M A, Brylinski C, Persio J, Hugon X, Vilotitch B and Noble Le C 1992 J. Cryst. Growth 124 782
[42] Zhang Y G, Hao G Q, Gu Y, Zhu C, Li A Z and Liu T D 2005 Chin. Phys. Lett. 22 250
[43] Zhang Y G, Gu Y, Zhu C, Hao G Q, Li A Z and Liu T D 2006 Infrared Phys. & Technol. 47 257
[44] Zhang Y G, Gu Y, Tian Z B, Li A Z, Zhu X R and Zheng Y L 2008 Infrared Phys. & Technol. 51 316
[45] Li C, Zhang Y G, Wang K, Gu Y, Li Hsby and Li Y Y 2010 Infrared Phys. & Technol. 53 173
[46] Zhang Y G, Gu Y, Tian Z B, Li A Z, Zhu X R and Wang K 2009 Infrared Phys. & Technol. 52 52
[47] Zhang Y G, Gu Y, Wang K, Li A Z and Li C 2008 Semicon. Sci. Technol. 23 125029
[48] Gu Y, Zhang Y G, Wang K, Li A Z and Li Y Y 2013 J. Cryst. Growth 378 65
[49] Xi S P, Gu Y, Zhang Y G, Chen X Y, Zhou L, Li A Z and Li Hsby 2015 J. Cryst. Growth 425 337
[50] Fang X, Gu Y, Zhang Y G, Zhou Li, Wang K, Li Hsby, Liu K H and Cao Y Y 2013 J. Infrared Millim. Waves 32 481
[51] Du B, Gu Y, Zhang Y G, Chen X Y, Xi S P, Ma Y J, Ji W Y, Shi Y H, Li X and Gong H M 2016 J. Cryst. Growth 440 1
[52] Gu Y, Zhang Y G, Wang K, Fang X and Liu K H 2012 Jpn. J. Appl. Phys. 51 080205
[53] Ma Y J, Zhang Y G, Chen X Y, Gu Y, Shi Y H, Ji W Y and Du B 2018 J. Phys. D: Appl. Phys. 51 145106
[54] Gu Y, Zhou L, Zhang Y G, Chen X Y, Ma Y J, Xi S P and Li Hsby 2015 Appl. Phys. Express 8 022202
[55] Du B, Gu Y, Chen X Y, Ma Y J, Shi Y H, Zhang J and Zhang Y G 2018 Jpn. J. Appl. Phys. 57 060302
[56] Shi Y H, Zhang Y G, Ma Y J, Gu Y, Chen X Y, Gong Q, Du B and Zhang J, Zhu Y 2018 Infrared Phys. & Technol. 89 72
[57] Chen X Y, Gu Y, Zhang Y G, Ma Y J, Du B, Shi Y H, Zhang J and Zhu Y 2018 Infrared Phys. & Technol. 89 381
[58] Zhou L, Zhang Y G, Gu Y, Chen X Y, Cao Y Y and Li Hsby 2013 J. Alloys Compd. 576 336
[59] Ma Y J, Gu Y, Zhang Y G, Chen X Y, Xi S P, Boldizsar Z, Huang L and Zhou L 2015 J. Mater. Chem. C 3 2872
[60] Zhang Y G, Liu K H, Gu Y, Zhou L, Li HSby, Chen X Y, Cao Y Y and Xi S P 2014 Semicond. Sci. Technol. 29 035018
[61] Zhang Y G, Gu Y, Chen X Y, Ma Y J, Li X, Shao X M, Gong H M and Fang J X 2017 Infrared Phys. & Technol. 83 45
[62] Zhang Y G, Gu Y, Chen X Y, Ma Y J, Li X, Shao X M, Gong H M and Fang J X 2018 Appl. Opt. 57 D141
[63] Tennant W E, Lee D, Zandian M, Piquette E and Carmody M 2008 J. Electron. Mater. 37 1406
[64] Zhang K F, Tang H J, Wu X L, Li X, Zhang Y G and Gong H M 2007 Proc. SPIE 6835 683506
[65] Shi M, Li T, Shao X M, Li X, Gong H M 2013 Proc. SPIE 8907 890755
[66] Li X, Li T, Yu C L, Tang H J, Deng S Y, Shao X M, Zhang Y G and Gong H M 2017 Proc. SPIE 10404 104040C
[67] Li T, Zhang K F, Li Y F, Tang H J, Li X and Gong H M 2009 Proc. SPIE 7383 73833Z
[68] Zhu Y M, Deng H H, Wei P, Li X and Gong H M 2011 Proc. SPIE 8193 81933D
[69] Li X, Tang H J, Li T, Wei P, Gong H M and Fang J X 2013 Proc. SPIE 8907 890703
[70] Yan H Z, Tang H J, Deng S Y, Chen G, Shao X M, Li T, Li X and Gong H M 2015 Proc. SPIE 9522 95221X
[71] Deng S Y, Li P, Li T, Li X, Shao X M, Tang H J and Gong H M 2015 Proc. SPIE 9674 967420
[72] Shi M, Shao X M, Tang H J, Li T, Wang Y J, Li X and Gong H M 2014 Infrared Phys. & Technol. 67 197
[73] Li P, Li T, Deng S Y, Li X, Shao X M, Tang H J and Gong H M 2015 Infrared Phys. & Technol. 71 140
[74] Yang J, Shi M, Shao X M, Li T, Li X, Tang N Y, Gong H M, Liu R, Tang H J and Qiu Z J 2015 Infrared Phys. & Technol. 71 272
[75] Gong H M, Li X, Li T, Tang H J, Shi M, Shao X M and Zhang Y G 2014 Proc. SPIE 9070 90700C
[76] Huang X, Li X, Shi M, Tang H J, Li T, Shao X M and Gong H M 2015 Infrared Phys. & Technol. 71 514
[77] Kleipool Q L, Jongma R T, Gloudemans A M S, Schrijver H, Lichtenberg G F, Hees R M, Maurellis A N and Hoogeveen R W M 2007 Infrared Phys. & Technol. 50 30
[78] Gu Y, Zhang Y G, Li C, Wang K, Li Hsby, Li X and Fang J X 2011 Infrared Phys. & Technol. 54 497
[79] Li C, Zhang Y G, Gu Y, Wang K, Li Hsby, Li X and Fang J X 2013 Infrared Phys. & Technol. 58 69
[80] Arslan Y, Oguz F and Besikci C 2014 IEEE J. Quantum Electron. 50 957
[81] Mushini P, Huang W, Morales M, Brubaker R, Nguyen T U, Dobies M, Zhang W, Gustus W, Mathews G, Endicter S and Paik N 2016 Proc. SPIE 9819 98190D
[82] Ettenberg M H, Nguyen H, Martin C R and Lange M 2018 Proc. SPIE 10624 1062404
[83] Huang C C, Ho C L and Wu M C 2015 IEEE Electron Dev. Lett. 36 820
[84] Chen X Y, Zhang Y G, Gu Y, Zhou L, Cao Y Y, Fang X and Li Hsby 2014 J. Cryst. Growth 393 75
[85] Zhou L, Zhang Y G, Chen X Y, Gu Y, Li Hsby, Cao Y Y and Xi S P 2014 J. Phys. D: Appl. Phys. 47 085107
[86] Chen X Y, Gu Y, Zhang Y G, Xi S P, Guo Z X, Zhou L, Li A Z and Li Hsby 2015 J. Cryst. Growth 425 346
[87] Chen X Y, Gu Y, Zhang Y G, Ma Y J, Du B, Zhang J, Ji W Y, Shi Y H and Zhu Y 2018 J. Cryst. Growth 488 51
[88] Habchi M M, Tounsi N, Bedoui Zaied M I, Rebey A and Jani B E 2014 Physica E 56 74
[89] Jurczak P, Sablon K A, Gutiérrez M, Liu H Y and Wu J 2017 Infrared Phys. & Technol. 81 320
[1] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[2] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[3] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[4] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[5] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[6] Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs
Shurui Cao(曹书睿), Ruize Feng(封瑞泽), Bo Wang(王博), Tong Liu(刘桐), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058502.
[7] Impact of symmetric gate-recess length on the DC and RF characteristics of InP HEMTs
Ruize Feng(封瑞泽), Bo Wang(王博), Shurui Cao(曹书睿), Tong Liu(刘桐), Yongbo Su(苏永波), Wuchang Ding(丁武昌), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018505.
[8] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[9] Ultraviolet irradiation dosimeter based on persistent photoconductivity effect of ZnO
Chao-Jun Wang(王朝骏), Xun Yang(杨珣), Jin-Hao Zang(臧金浩), Yan-Cheng Chen(陈彦成), Chao-Nan Lin(林超男), Zhong-Xia Liu(刘忠侠), Chong-Xin Shan(单崇新). Chin. Phys. B, 2020, 29(5): 058504.
[10] High-performance waveguide-integrated Ge/Si avalanche photodetector with small contact angle between selectively epitaxial growth Ge and Si layers
Xiao-Qian Du(杜小倩), Chong Li(李冲), Ben Li(黎奔), Nan Wang(王楠), Yue Zhao(赵越), Fan Yang(杨帆), Kai Yu(余凯), Lin Zhou(周琳), Xiu-Li Li(李秀丽), Bu-Wen Cheng(成步文), Chun-Lai Xue(薛春来). Chin. Phys. B, 2019, 28(6): 064208.
[11] Fullerene-based electrode interlayers for bandgap tunable organometal perovskite metal-semiconductor-metal photodetectors
Wen Luo(罗文), Li-Zhi Yan(闫立志), Rong Liu(刘荣), Tao-Yu Zou(邹涛隅), Hang Zhou(周航). Chin. Phys. B, 2019, 28(4): 047804.
[12] Photodetectors based on small-molecule organic semiconductor crystals
Jing Pan(潘京), Wei Deng(邓巍), Xiuzhen Xu(徐秀真), Tianhao Jiang(姜天昊), Xiujuan Zhang(张秀娟), Jiansheng Jie(揭建胜). Chin. Phys. B, 2019, 28(3): 038102.
[13] Progress in quantum well and quantum cascade infrared photodetectors in SITP
Xiaohao Zhou(周孝好), Ning Li(李宁), Wei Lu(陆卫). Chin. Phys. B, 2019, 28(2): 027801.
[14] Recent progress of infrared photodetectors based on lead chalcogenide colloidal quantum dots
Jinming Hu(胡津铭), Yuansheng Shi(史源盛), Zhenheng Zhang(张珍衡), Ruonan Zhi(智若楠), Shengyi Yang(杨盛谊), Bingsuo Zou(邹炳锁). Chin. Phys. B, 2019, 28(2): 020701.
[15] Thickness-modulated in-plane Bi2O2Se homojunctions for ultrafast high-performance photodetectors
Cheng-Yun Hong(洪成允), Gang-Feng Huang(黄刚锋), Wen-Wen Yao(要文文), Jia-Jun Deng(邓加军), Xiao-Long Liu(刘小龙). Chin. Phys. B, 2019, 28(12): 128502.
No Suggested Reading articles found!