Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 124702    DOI: 10.1088/1674-1056/abb3e4
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Gravity-capillary waves modulated by linear shear flow in arbitrary water depth

Shaofeng Li(李少峰), Jinbao Song(宋金宝)†, and Anzhou Cao(曹安州)‡
Ocean College, Zhejiang University, Zhoushan 316000, China
Abstract  Considering that the fluid is inviscid and incompressible and the flow is irrotational in a fixed frame of reference and using the multiple scale analysis method, we derive a nonlinear Schrödinger equation (NLSE) describing the evolution dynamics of gravity-capillary wavetrains in arbitrary constant depth. The gravity-capillary waves (GCWs) are influenced by a linear shear flow (LSF) which consists of a uniform flow and a shear flow with constant vorticity. The modulational instability (MI) of GCWs with the LSF is analyzed using the NLSE. The MI is effectively modified by the LSF. In infinite depth, there are four asymptotes which are the boundaries between MI and modulational stability (MS) in the instability diagram. In addition, the dimensionless free surface elevation as a function of time for different dimensionless water depth, surface tension, uniform flow and vorticity is exhibited. It is found that the decay of free surface elevation and the steepness of free surface amplitude change over time, which are greatly affected by the water depth, surface tension, uniform flow and vorticity.
Keywords:  gravity-capillary waves      nonlinear Schrödinger equation      linear shear flow      modulational instability  
Received:  27 May 2020      Revised:  13 July 2020      Accepted manuscript online:  01 September 2020
PACS:  47.35.Fg (Solitary waves)  
  47.35.Pq (Capillary waves)  
  92.10.Hm (Ocean waves and oscillations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 41830533) and the National Key Research and Development Program of China (Grant Nos. 2016YFC1401404 and 2017YFA0604102).
Corresponding Authors:  Corresponding author. E-mail: songjb@zju.edu.cn Corresponding author. E-mail: caoanzhou@zju.edu.cn   

Cite this article: 

Shaofeng Li(李少峰), Jinbao Song(宋金宝), and Anzhou Cao(曹安州) Gravity-capillary waves modulated by linear shear flow in arbitrary water depth 2020 Chin. Phys. B 29 124702

[1] Zheng G Z, Cong P X and Pei H Y J. Geophys. Res. 111 C11016 DOI: 10.1029/2005JC0031062006
[2] Zhang T and Song J B Adv. Atmos. Sci. 35 469 DOI: 10.1007/s00376-017-7101-72018
[3] Zakharov V E J. Appl. Math. Tech. Phys. 9 190 DOI: 10.1007/bf009131821972
[4] Benney D J and Roskes G Stud. Appl. Math. 48 377 DOI: 10.1002/sapm19694843771969
[5] Hasimoto H and Ono H J. Phys. Soc. Jpn. 33 805 DOI: 10.1143/JPSJ.33.8051972
[6] Davey A and Stewartson K Proc. R. Soc. Lond. A 338 101 DOI: 10.1098/rspa.1974.00761974
[7] Djordjevic V D and Redelopp L G J. Fluid Mech. 79 703 DOI: 10.1017/S00221120770004081977
[8] Li J C, Hui W H and Donelan M A1988 Nonlinear Water Waves(Berlin: Springer-Verlag) pp. 213-220
[9] Thomas R, Kharif C and Manna M Phys. Fluids 24 127102 DOI: 10.1063/1.47685302012
[10] Hsu H C, Kharif C, Abid M and Chen Y Y J. Fluid Mech. 854 146 DOI: 10.1017/jfm.2018.6272018
[11] Li S F, Chen J, Cao A Z and Song J B Chin. Phys. B 28 124701 DOI: 10.1088/1674-1056/ab53cf2019
[12] Abid M, Kharif C, Hsu H C and Chen Y Y J. Fluid Mech. 871 1028 DOI: 10.1017/jfm.2019.3502019
[13] Zhang J and Melville W K Wave Motion. 8 439 DOI: 10.1016/0165-2125(86)90029-61986
[14] Tiron R and Choi W J. Fluid Mech. 696 402 DOI: 10.1017/jfm.2012.562012
[15] Vanden-Broeck J M and Dias F J. Fluid Mech. 240 549 DOI: 10.1017/S00221120920001931992
[16] Longuet-Higgins M S J. Fluid Mech. 200 451 DOI: 10.1017/S002211208900073X1989
[17] Kang Y and Vanden-Broeck J M Eur. J. Mech. B Fluids 19 253 DOI: 10.1016/S0997-7546(90)00103-F2000
[18] Gao T, Wang Z and Milewski P A J. Fluid Mech. 876 55 DOI: 10.1017/jfm.2019.5282019
[19] Akers B and Milewski P A Stud. Appl. Math. 122 249 DOI: 10.1111/sapm.2009.122.issue-32009
[20] Akers B and Milewski P A SIAM. J. Appl. Math. 70 2390 DOI: 10.1137/0907583862010
[21] Wang Z and Milewski P A J. Fluid Mech. 708 480 DOI: 10.1017/jfm.2012.3202012
[22] Milewski P A and Wang Z Proc. R. Soc. A 470 20130537 DOI: 10.1098/rspa.2013.05372014
[23] Dorio J D, Cho Y, Duncan J H and Akylas T R J. Fluid Mech. 672 268 DOI: 10.1017/S00221120100059992011
[24] Park B and Cho Y J. Fluid Mech. 808 168 DOI: 10.1017/jfm.2016.6392016
[25] Masnadi N and Duncan J H J. Fluid Mech. 814 R1 DOI: 10.1017/jfm.2017.502017
[26] Zhang X J. Fluid Mech. 289 51 DOI: 10.1017/S00221120950012361995
[27] Zhang X Eur. J. Mech. B Fluids 18 373 DOI: 10.1016/S0997-7546(99)80035-11999
[28] Liao B, Dong G, Ma Y and Gao J L Phys. Rev. E. 96 043111 DOI: 10.1103/PhysRevE.96.0431112017
[29] Zhao L C and Ling L M J. Opt. Soc. Am. B 33 850 DOI: 10.1364/JOSAB.33.0008502016
[30] Ling L M, Zhao L C, Yang Z Y and Guo B L Phys. Rev. E 96 022211 DOI: 10.1103/PhysRevE.96.0222112017
[31] Baronio F, Conforti M, Degasperis A, Lombardo S, Onorato M and Wabnitz S Phys. Rev. Lett. 113 034101 DOI: 10.1103/PhysRevLett.113.0341012014
[32] Baronio F, Chen S H, Grelu P, Wabnitz S and Conforti M Phys. Rev. A 91 033804 DOI: 10.1103/PhysRevA.91.0338042015
[33] Ablowitz M J and Segur H J. Fluid Mech. 92 691 DOI: 10.1017/S00221120790008351979
[34] Benjamin T B and Hasselmann K Proc. R. Soc. Lond. A 299 59 DOI: 10.1098/rspa.1967.01231967
[35] Wang D L, Yan X H and Tang Y J. Phys. Soc. Jpn. 73 123 DOI: 10.1143/JPSJ.73.1232004
[1] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[2] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[3] Propagation dynamics of relativistic electromagnetic solitary wave as well as modulational instability in plasmas
Rong-An Tang(唐荣安), Tiao-Fang Liu(刘调芳), Xue-Ren Hong(洪学仁), Ji-Ming Gao(高吉明), Rui-Jin Cheng(程瑞锦), You-Lian Zheng(郑有莲), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(1): 015201.
[4] Dynamics of the plane and solitary waves in a Noguchi network: Effects of the nonlinear quadratic dispersion
S A T Fonkoua, M S Ngounou, G R Deffo, F B Pelap, S B Yamgoue, A Fomethe. Chin. Phys. B, 2020, 29(3): 030501.
[5] Discrete modulational instability and bright localized spin wave modes in easy-axis weak ferromagnetic spin chains involving the next-nearest-neighbor coupling
Jiayu Xie(谢家玉), Zhihao Deng(邓志豪), Xia Chang(昌霞), Bing Tang(唐炳). Chin. Phys. B, 2019, 28(7): 077501.
[6] Numerical simulation on modulational instability of ion-acoustic waves in plasma
Yi-Rong Ma(马艺荣), Lie-Juan Li(李烈娟), Wen-Shan Duan(段文山). Chin. Phys. B, 2019, 28(2): 025201.
[7] A nonlinear Schrödinger equation for gravity waves slowly modulated by linear shear flow
Shaofeng Li(李少峰), Juan Chen(陈娟), Anzhou Cao(曹安州), Jinbao Song(宋金宝). Chin. Phys. B, 2019, 28(12): 124701.
[8] Modulational instability, quantum breathers and two-breathers in a frustrated ferromagnetic spin lattice under an external magnetic field
Wanhan Su(苏琬涵), Jiayu Xie(谢家玉), Tianle Wu(吴天乐), Bing Tang(唐炳). Chin. Phys. B, 2018, 27(9): 097501.
[9] Characteristics and generation of elastic turbulence in a three-dimensional parallel plate channel using direct numerical simulation
Hong-Na Zhang(张红娜), Feng-Chen Li(李凤臣), Xiao-Bin Li(李小斌), Dong-Yang Li(李东阳), Wei-Hua Cai(蔡伟华), Bo Yu(宇波). Chin. Phys. B, 2016, 25(9): 094701.
[10] Modeling of nonlinear envelope solitons in strongly coupled dusty plasmas: Instability and collision
S. K. El-Labany, E. F. El-Shamy, W. F. El-Taibany, N. A. Zedan. Chin. Phys. B, 2015, 24(3): 035201.
[11] Relativistic degenerate effects of electrons and positrons on modulational instability of quantum ion acoustic waves in dense plasmas with two polarity ions
Liu Tie-Lu (刘铁路), Wang Yun-Liang (王云良), Lu Yan-Zhen (路彦珍). Chin. Phys. B, 2015, 24(2): 025202.
[12] Discrete energy transport in collagen molecules
Alain Mvogo, Germain H. Ben-Bolie, Timoléon C. Kofané. Chin. Phys. B, 2014, 23(9): 098701.
[13] Bound states of spatial optical dark solitons in nonlocal media
Ou-Yang Shi-Gen(欧阳世根), Hu Wei(胡巍), and Guo Qi(郭旗) . Chin. Phys. B, 2012, 21(4): 040505.
[14] Compact implicit integration factor methods for some complex-valued nonlinear equations
Zhang Rong-Pei(张荣培) . Chin. Phys. B, 2012, 21(4): 040205.
[15] Solving coupled nonlinear Schrödinger equations via a direct discontinuous Galerkin method
Zhang Rong-Pei(张荣培), Yu Xi-Jun(蔚喜军), and Feng Tao (冯涛) . Chin. Phys. B, 2012, 21(3): 030202.
No Suggested Reading articles found!