Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 034202    DOI: 10.1088/1674-1056/ac1e10
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

New multiplexed system for synchronous measurement of out-of-plane deformation and two orthogonal slopes

Yonghong Wang(王永红)1,2, Xiao Zhang(张肖)1, Qihan Zhao(赵琪涵)1, Yanfeng Yao(姚彦峰)1, Peizheng Yan(闫佩正)1,†, and Biao Wang(王标)1
1 School of Instrument Science and Opto-electronics Engineering, Hefei University of Technology, Hefei 230009, China;
2 Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, Hefei University of Technology, Hefei 230009, China
Abstract  We propose a novel system for synchronous measurement of out-of-plane deformation and two orthogonal slopes using a single camera. The linearly polarized reference beam introduced by an optical fiber interferes with the unpolarized object beam to measure the out-of-plane deformation. A modified Mach—Zehnder interferometer is used to measure the two orthogonal slopes of the out-of-plane deformation. One of the object beams of the Mach—Zehnder interferometer is an unpolarized beam, and the other object beam is split into two orthogonal linearly polarized object beams by a polarizing prism. The two beams are orthogonally polarized. Hence, they will not interfere with each other. The two polarized beams respectively interfere with the unpolarized beam to simultaneously measure the two orthogonal slopes of the out-of-plane deformation. In addition, the imaging lens and apertures are respectively placed in three optical paths to independently control the carrier frequencies and shearing amounts. The effectiveness of this method can be proved by measuring two pressure-loaded circular plates.
Keywords:  digital speckle pattern interferometry      digital shearography      digital speckle pattern interferometry      simultaneous measurement of displacement and two orthogonal slopes  
Received:  26 May 2021      Revised:  10 August 2021      Accepted manuscript online:  17 August 2021
PACS:  42.15.Eq (Optical system design)  
  42.30.Ms (Speckle and moiré patterns)  
  42.40.-i (Holography)  
  42.87.Bg (Phase shifting interferometry)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFF0101803), the Hefei Municipal Natural Science Foundation (Grant No. 2021017), the Fundamental Research Funds for the Central Universities of China (Grant No. JZ2019HGTB0076).
Corresponding Authors:  Peizheng Yan     E-mail:  pzyan@hfut.edu.cn

Cite this article: 

Yonghong Wang(王永红), Xiao Zhang(张肖), Qihan Zhao(赵琪涵), Yanfeng Yao(姚彦峰), Peizheng Yan(闫佩正), and Biao Wang(王标) New multiplexed system for synchronous measurement of out-of-plane deformation and two orthogonal slopes 2022 Chin. Phys. B 31 034202

[1] Gao Y, Fu S H, Cai Y L, Cheng T and Zhang Q C 2014 Acta Phys. Sin. 63 (in Chinese)
[2] Jiang H F, Zhang Q C, Xu Y H and Wu X P 2006 Acta Phys. Sin. 55 409 (in Chinese)
[3] Hu Q, Zhang Q C, Fu S H, Cao P T and Gong M 2011 Acta Phys. Sin. 60 096201 (in Chinese)
[4] Hung Y Y 1982 Opt. Eng. 21 213391
[5] Aswendt P, Höfling R and Totzauer W 1990 Opt. Laser Technol. 22 278
[6] Yang L X, Zhang P, Liu S, Samala P R, Su M and Yokota H 2007 Opt. Lasers Eng. 45 843
[7] Xie X, Chen X, Li J, Wang Y and Yang L X 2015 Meas. Sci. Technol. 26 115202
[8] Arvieux C and Common H 2018 Orthop. Traumatol. Surg. Res. 105 23
[9] Zhong P, Li Z, Yang H, Tang X and He G 2019 Sensors 19 365
[10] Gao X Y, Wang Y H, Dan X Z, Bernard S and Yang L X 2019 J. Mod. Opt. 66 153
[11] Sánchez B E, Vieira F A, Pedr W D, Eduard B M and Armando A G 2018 Opt. Lasers Eng. 111 86
[12] Wang Y H, Gao X Y, Xie X, Wu S J, Liu X L and Yang L X 2016 Opt. Lasers Eng. 87 197
[13] Anouncia S M 2018 Insight 60 685
[14] Zhao Q H, Chen W J, Sun F Y, Yan P Z, Ye B and Wang Y H 2019 Appl. Opt. 58 8665
[15] Bhaduri B, Mohan N K and Kothiyal M P 2006 Opt. Lasers Eng. 44 637
[16] Bhaduri B, Mohan N K, M, Kothiyal M P and Sirohi R S 2006 Opt. Express 14 11598
[17] Bhaduri B, Mohan N K and Kothiyal M P 2007 Appl. Opt. 46 5680
[18] Xie X, Xu N, Sun J F, Wang Y H and Yang L X 2013 Opt. Commun. 286 277
[19] Zhao Q H, Zhang X, Wu S L, Wang H Q, Yan P Z and Wang Y H 2021 Opt. Commun. 482 126602
[20] Gu G Q, Xu G Z and Xu B 2018 Metrol. Meas. Syst. 25 3
[21] Amjad J M 2020 Appl. Opt. 59 3920
[1] Research on the model of high robustness computational optical imaging system
Yun Su(苏云), Teli Xi(席特立), and Xiaopeng Shao(邵晓鹏). Chin. Phys. B, 2023, 32(2): 024202.
[2] Enhanced single photon emission in silicon carbide with Bull's eye cavities
Xing-Hua Liu(刘兴华), Fang-Fang Ren(任芳芳), Jiandong Ye(叶建东), Shuxiao Wang(王书晓), Wei-Zong Xu(徐尉宗), Dong Zhou(周东), Mingbin Yu(余明斌), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2022, 31(10): 104206.
[3] Bandwidth expansion and pulse shape optimized for 10 PW laser design via spectral shaping
Da-Wei Li(李大为), Tao Wang(王韬), Xiao-Lei Yin(尹晓蕾), Li Wang(王利), Jia-Mei Li(李佳美),Hui Yu(余惠), Yong Cui(崔勇), Tian-Xiong Zhang(张天雄), Xing-Qiang Lu(卢兴强), and Guang Xu(徐光). Chin. Phys. B, 2022, 31(9): 094210.
[4] Design of three-dimensional imaging lidar optical system for large field of view scanning
Qing-Yan Li(李青岩), Yu Zhang(张雨), Shi-Yu Yan(闫诗雨),Bin Zhang(张斌), and Chun-Hui Wang(王春晖). Chin. Phys. B, 2022, 31(7): 074201.
[5] Digital synthesis of programmable photonic integrated circuits
Juan Zhang(张娟), Zhengyong Ji(计正勇), Yipeng Ding(丁一鹏), and Yang Wang(王阳). Chin. Phys. B, 2022, 31(2): 024208.
[6] Tunable terahertz transmission behaviors and coupling mechanism in hybrid MoS2 metamaterials
Yuwang Deng(邓雨旺), Qingli Zhou(周庆莉), Wanlin Liang(梁菀琳), Pujing Zhang(张朴婧), and Cunlin Zhang(张存林). Chin. Phys. B, 2022, 31(1): 014101.
[7] Analysis of natural frequency for imaging interface in liquid lens
Na Xie(谢娜). Chin. Phys. B, 2021, 30(10): 104702.
[8] Multiple induced transparency in a hybrid driven cavity optomechanical device with a two-level system
Wei Zhang(张伟), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), and Zhong-Yang Wang(王中阳). Chin. Phys. B, 2021, 30(9): 094203.
[9] Reversible waveform conversion between microwave and optical fields in a hybrid opto-electromechanical system
Li-Guo Qin(秦立国), Zhong-Yang Wang(王中阳), Jie-Hui Huang(黄接辉), Li-Jun Tian(田立君), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(6): 068502.
[10] Narrow-band high-transmittance birefringent filter and its application in wide color gamut display
Chi Zhang(张弛), Rui Niu(牛瑞), Wenjuan Li(李文娟), Xiaoshuai Li(李小帅), Hongmei Ma(马红梅), and Yubao Sun(孙玉宝). Chin. Phys. B, 2021, 30(5): 054207.
[11] Controlling multiple optomechanically induced transparency in the distant cavity-optomechanical system
Rui-Jie Xiao(肖瑞杰), Gui-Xia Pan(潘桂侠), and Xiao-Ming Xiu(修晓明). Chin. Phys. B, 2021, 30(3): 034209.
[12] An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators
Bo-Yun Wang(王波云), Yue-Hong Zhu(朱月红), Jing Zhang(张静), Qing-Dong Zeng(曾庆栋), Jun Du(杜君), Tao Wang(王涛), Hua-Qing Yu(余华清). Chin. Phys. B, 2020, 29(8): 084211.
[13] Extraordinary propagation characteristics of electromagnetic waves in one-dimensional anti-PT-symmetric ring optical waveguide network
Jie-Feng Xu(许杰锋), Xiang-Bo Yang(杨湘波), Hao-Han Chen(陈浩瀚), Zhan-Hong Lin(林展鸿). Chin. Phys. B, 2020, 29(6): 064201.
[14] Wide color gamut switchable autostereoscopic 3D display based on directional quantum-dot backlight
Bin Xu(徐斌), Xue-Ling Li(李雪玲), Yuan-Qing Wang(王元庆). Chin. Phys. B, 2019, 28(12): 124208.
[15] Opto-electromechanically induced transparency in a hybrid opto-electromechanical system
Hui Liu(刘慧), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2019, 28(10): 108502.
No Suggested Reading articles found!