Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 107502    DOI: 10.1088/1674-1056/27/10/107502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Ferromagnetism and magnetostructural coupling in V-doped MnNiGe alloys

Hui Yang(杨慧), Jun Liu(刘俊), Chao Li(李超), Guang-Long Wang(王广龙), Yuan-Yuan Gong(龚元元), Feng Xu(徐锋)
MⅡT Key Laboratory of Advanced Metallic and Intermetallic Materials Technology, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  

The magnetostructural coupling between magnetic and structure transitions plays an important role in the multifunctional applications of magentocaloric materials. In this work, ferromagnetism and magnetostructural transformation are achieved in nonmagnetic V-doped MnNiGe alloys. With simultaneously reducing the transformation temperature and converting antiferromagnetic martensite to ferromagnetic state, the magnetostructural transformation between ferromagnetic orthorhombic phase and paramagnetic hexagonal phase is established in a temperature region as large as 130 K. The magnetic-field-induced magnetostructural transformation is accompanied by considerable magnetocaloric effect.

Keywords:  magnetostructural transformation      ferromagnetism      magnetocaloric effect  
Received:  21 July 2018      Revised:  16 August 2018      Accepted manuscript online: 
PACS:  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  75.50.Gg (Ferrimagnetics)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
Fund: 

Project supported by the Key Research & Development Program of Jiangsu Province, China (Grant No. BE2017102)

Corresponding Authors:  Feng Xu     E-mail:  xufeng@njust.edu.cn

Cite this article: 

Hui Yang(杨慧), Jun Liu(刘俊), Chao Li(李超), Guang-Long Wang(王广龙), Yuan-Yuan Gong(龚元元), Feng Xu(徐锋) Ferromagnetism and magnetostructural coupling in V-doped MnNiGe alloys 2018 Chin. Phys. B 27 107502

[1] Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T and Ishida K 2006 Nature 439 957
[2] Dutta P, Pramanick S, Majumdar S, Das D and Chatterjee S 2015 J. Magn. Magn. Mater. 395 312
[3] Morellon L, Stankiewicz J, García-Landa B, Algarabel P A and Ibarra M R 1998 Appl. Phys. Lett. 73 3462
[4] Yu S Y, Liu Z H, Liu G D, Chen J L, Cao Z X, Wu G H, Zhang B and Zhang X X 2006 Appl. Phys. Lett. 89 162503
[5] Zhang C L, Wang D H, Cao Q Q, Xuan H C, Ma S C and Du Y W 2010 Chin. Phys. B 19 37501
[6] Pecharsky V K and Gschneidner K A Jr. 1997 Phys. Rev. Lett. 78 4494
[7] Wada H and Tanabe Y 2001 Appl. Phys. Lett. 79 3302
[8] Dutta P, Pramanick S, Singh V, Major D T, Das D and Chatterjee S 2016 Phys. Rev. B 93 134408
[9] Koyama K, Sakai M, Kanomata T and Watanabe K 2004 Jpn. J. Appl. Phys. Part 1 43 8036
[10] Gama S, Coelho A A, de Campos A, Carvalho A M, Gandra F C G, von Ranke P J and de Oliveira N A 2004 Phys. Rev. Lett. 93 237202
[11] Zhang X X, Zhang B, Yu S Y, Liu Z H, Xu W J, Liu G D, Chen J L, Cao Z X and Wu G H 2007 Phys. Rev. B 76 132403
[12] Bażela W, Szytuła A, Todorovć J, Tomkowicz Z and Ziȩba A 1976 Phys. Status Solidi A 38 721
[13] Oikawa K, Ito W, Imano Y, Sutou Y, Kainuma R, Ishida K, Okamoto S and Kitakami O 2006 Appl. Phys. Lett. 88 122507
[14] Yu S Y, Ma L, Liu G D, Liu Z H, Chen J L, Cao Z X, Wu G H, Zhang B and Zhang X X 2007 Appl. Phys. Lett. 90 242501
[15] Liu E K, Zhang H G, Xu G Z, Zhang X M, Ma R S, Wang W H, Chen J L, Zhang H W, Wu G H, Feng L and Zhang X X 2013 Appl. Phys. Lett. 102 122405
[16] Liu E K, Wang W H, Feng L, Zhu W, Li G J, Chen J L, Zhang H W, Wu G H, Jiang C B, Xu H B and de Boer F 2012 Nat. Commun. 3 873
[17] Zhang C L, Wang D H, Cao Q Q, Ma S C, Xuan H C and Du Y W 2010 J. Phys. D 43 205003
[18] Zhang C L, Wang D H, Chen J, Wang T Z, Xie G X and Zhu C 2011 Chin. Phys. B 20 097501
[19] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[20] Oikawa K, Ito W, Imano Y, Sutou Y, Kainuma R, Ishida K, Okamoto S and Kitakami O 2006 Appl. Phys. Lett. 88 122507
[21] Szytuła A, Pedziwiatr A T, Tomkowicz Z and Bażela W 1981 J. Magn. Magn. Mater. 25 176
[22] Zhang C L, Shi H F, Nie Y G, Ye E J, Han Z D and Wang D H 2014 Appl. Phys. Lett. 105 242403
[23] Daniel-Pérez G, Sánchez Llamazares J L, Quintana-Nedelcos A, Álvarez-Alonso P, Varga R and Chernenko V 2014 J. Appl. Phys. 115 17A920
[24] Jaworska-Gołąb T, Baran S, Duraj R, Marzec M, Dyakonov V, Sivachenko A, Tyvanchuk Y, Szymczak H and Szytuła A 2015 J. Magn. Magn. Mater. 385 1
[25] Quetz, A, Samanta T, Dubenko I, Kangas M J, Chan J Y, Stadler S and Ali N 2013 J. Appl. Phys. 114 153909
[26] Kaprzyk S and Niziol S 1990 J. Magn. Magn. Mater. 87 267
[27] Barcza A, Gercsi Z, Knight K S and Sandeman K G 2010 Phys. Rev. Lett. 104 247202
[28] Zhang C L, Zhu C, Chen J, Wang T Z and Han Z D 2012 J. Appl. Phys. 112 123911
[29] Wei Z Y, Liu E K, Li Y, Xu G Z, Zhang X M, Liu G D, Xi X K, Zhang H W, Wang W H, Wu G H and Zhang X X 2015 Adv. Electron. Mater. 1 1500076
[30] Xu K, Li Z, Liu E, Zhou H, Zhang Y and Jing C 2017 Sci. Rep. 7 41675
[31] Qu Y H, Cong D H, Sun X M, Nie Z H, Gui W Y, Li R G, Ren Y and Wang Y D 2017 Acta Mater. 134 236
[32] Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T and Ishida K 2006 Nature 439 957
[33] Du J, Zheng Q, Ren W J, Feng W J, Liu X G and Zhang Z D 2007 J. Phys. D 40 5523
[34] Hu F X, Sun J R, Wu G H and Shen B G 2001 J. Appl. Phys. 90 5216
[35] Zhang C L, Wang D H, Chen J, Wang T Z, Xie G X and Zhu C 2011 Chin. Phys. B 20 097501
[36] Shah I A, ul Hassan N, Rauf A, Liu J, Gong Y Y, Xu G Z and Xu F 2017 Chin. Phys. B 26 097501
[37] ul Hassan N, Shah I A, Khan T, Liu J, Gong Y Y, Miao X F and Xu F 2018 Chin. Phys. B 27 037504
[38] Provenzano V, Shapiro A J and Shull R D 2004 Nature 429 853
[39] Liu J, Gottschall T, Skokov K P, Moore J D and Gutfleisch O 2012 Nat. Mater. 11 620
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[4] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[5] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[6] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[7] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[8] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[9] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[10] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[11] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[12] Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study
Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明). Chin. Phys. B, 2021, 30(9): 096105.
[13] Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)
Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰). Chin. Phys. B, 2021, 30(7): 077501.
[14] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[15] Effects of Ni substitution on multiferroic properties in Bi5FeTi3O15 ceramics
Hui Sun(孙慧), Jiaying Niu(钮佳颖), Haiying Cheng(成海英), Yuxi Lu(卢玉溪), Zirou Xu(徐紫柔), Lei Zhang(张磊), and Xiaobing Chen(陈小兵). Chin. Phys. B, 2021, 30(10): 107701.
No Suggested Reading articles found!