Surface plasmon polariton waveguides with subwavelength confinement
Longkun Yang(杨龙坤)1, Pan Li(李盼)1, Hancong Wang(汪涵聪)2, Zhipeng Li(李志鹏)1
1 The Beijing Key Laboratory for Nano-Photonics and Nano-Structure(NPNS), Center for Condensed Matter Physics, Department of Physics, Capital Normal University, Beijing 100048, China;
2 The Fujian Provincial Key Laboratory of Automotive Electronics and Electric Drive, School of Information Science and Engineering, Fujian University of Technology, Fuzhou 350108, China
Surface plasmon polaritons (SPPs) are evanescent waves propagating along metal-dielectric interfaces, which provide an effective way to realize optical wave guiding with subwavelength confinement. Metallic nanostructures supporting SPPs, that is, plasmonic waveguides, are considered as required components to construct nanophotonic devices and circuits with a high degree of miniaturization and integration. In this paper, various types of plasmonic waveguides operating in the visible, infrared, and terahertz regions are reviewed, and the status of the research on their fundamentals, fabrications, and applications is provided as well. First, we discuss the mechanisms of SPPs beyond the diffraction limit, and their launching methods. Then, the characteristics of SPPs on various plasmonic waveguides are reviewed, including top-down and bottom-up fabricated types. Considering applications, certain prototypes of plasmonic devices and circuits constructed by plasmonic waveguides for bio/chemo sensing, router, and light modulation are demonstrated. Finally, a summary and future outlook of plasmonic waveguides are given.
Project supported by the National Natural Science Foundation of China (Grant Nos. 11704266 and 11774245), the Fok Ying Tung Education Foundation, China (Grant No. 151010), the Scientific Research Base Development Program of Beijing Municipal Commission of Education, China, the General Foundation of Beijing Municipal Commission of Education, China (Grant No. KM201810028006), and the Training Program of the Major Research Plan of Capital Normal University, China.
Corresponding Authors:
Zhipeng Li
E-mail: zpli@cnu.edu.cn
Cite this article:
Longkun Yang(杨龙坤), Pan Li(李盼), Hancong Wang(汪涵聪), Zhipeng Li(李志鹏) Surface plasmon polariton waveguides with subwavelength confinement 2018 Chin. Phys. B 27 094216
[1]
Mekis A, Chen J, Kurl, I, Fan S H, Villeneuve P and Joannopoulos J 1996 Phys. Rev. Lett. 77 3787
[2]
Xia F, Sekaric L and Vlasov Y 2007 Nat. Photon. 1 65
[3]
Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W and Leuthold J 2009 Nat. Photon. 3 216
[4]
Frandsen L, Borel P, Zhuang Y, Harpoth A, Thorhauge M, Kristensen M, Bogaerts W, Dumon P and Baets R 2004 Opt. Lett. 29 1623
[5]
Foster M A, Turner A C, Sharping J E, Schmidt B S, Lipson M and Gaeta A L 2006 Nature 441 960
[6]
Born M and Wolf E 2013 Principles of Optics:Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier)
[7]
Ozbay E 2006 Science 311 189
[8]
Gramotnev D and Bozhevolnyi S 2010 Nat. Photon. 4 83
[9]
Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[10]
Maier S A 2007 Plasmonics:Fundamentals and Applications (Springer)
[11]
Li Z, Shegai T, Haran G and Xu H 2009 ACS Nano 3 637
[12]
Chuntonov L and Haran G 2011 Nano Lett. 11 2440
[13]
Chuntonov L and Haran G 2011 J. Phys. Chem. C 115 19488
[14]
Wang H, Li Z, Zhang H, Wang P and Wen S 2015 Sci. Rep. 5 8207
[15]
Yang L, Wang H, Fang Y and Li Z 2016 ACS Nano 10 1580
[16]
Xu H, Wang X, Persson M, Xu H, Käll M and Johansson P 2004 Phys. Rev. Lett. 93 243002
[17]
Shegai T, Li Z, Dadosh T, Zhang Z, Xu H and Haran G 2008 Proc. Natl. Acad. Sci. USA 105 16448
[18]
Chuntonov L and Haran G 2013 Nano Lett. 13 1285
[19]
Haran G 2010 Acc. Chem. Res. 43 1135
[20]
Barnes W L, Murray W A, Dintinger J, Devaux E and Ebbesen T 2004 Phys. Rev. Lett. 92 107401
[21]
Wei H, Pan D, Zhang S, Li Z, Li Q, Liu N, Wang W and Xu H 2018 Chem. Rev. 118 2882
[22]
Guo X, Qiu M, Bao J, Wiley B J, Yang Q, Zhang X, Ma Y, Yu H and Tong L 2009 Nano Lett. 9 4515
[23]
Guo X, Ma Y, Wang Y and Tong L 2013 Laser Photon. Rev. 7 855
[24]
Lal S, Hafner J H, Halas N J, Link S and Nordlander P 2012 Acc. Chem. Res. 45 1887
[25]
Huang T, Wang J, Li Z, Liu W, Lin F, Fang Z and Zhu X 2016 Chin. Phys. B 25 087302
[26]
Yang C, Zhao H, Wang P, Li J, Tang P, Qu S, Lin F and Zhu X 2014 Chin. Phys. B 23 117302
[27]
Li Q, Wei H and Xu H 2014 Chin. Phys. B 23 097302
[28]
Wang Y, Zhang L, Mei J, Zhang W and Tong Y 2015 Chin. Phys. B 24 127302
[29]
Li Q, Pan D, Wei H and Xu H 2018 Nano Lett. 18 2009
[30]
Li Q, Wei H and Xu H 2014 Nano Lett. 14 3358
[31]
Barnes W 2006 J. Opt. A:Pure Appl. Opt. 8 S87
[32]
Zia R, Selker M and Brongersma M 2005 Phys. Rev. B 71 165431
[33]
Ropers C, Neacsu C, Elsaesser T, Albrecht M, Raschke M and Lienau C 2007 Nano Lett. 7 2784
[34]
Knight M W, Grady N K, Bardhan R, Hao F, Nordlander P and Halas N J 2007 Nano Lett. 7 2346
[35]
Fang Z, Lu Y, Fan L, Lin C and Zhu X 2010 Plasmonics 5 57
[36]
Fang Z, Fan L, Lin C, Zhang D, Meixner A J and Zhu X 2011 Nano Lett. 11 1676
[37]
Fang Z, Huang S, Zhu X and Fan L 2010 J. Korean Phys. Soc. 56 1725
[38]
Li Z, Hao F, Huang Y, Fang Y, Nordlander P and Xu H 2009 Nano Lett. 9 4383
[39]
Wang W, Yang Q, Fan F, Xu H and Wang Z L 2011 Nano Lett. 11 1603
[40]
Li M, Zou C L, Ren X F, Xiong X, Cai Y J, Guo G P, Tong L M and Guo G C 2015 Nano Lett. 15 2380
[41]
Cai W, Sainidou R, Xu J, Polman A and Javier Garcia de Abajo F 2009 Nano Lett. 9 1176
[42]
Vieu C, Carcenac F, Pepin A, Chen Y, Mejias M, Lebib A, Manin-Ferlazzo L, Couraud L and Launois H 2000 Appl. Sur. Sci. 164 111
[43]
Tseng A, Chen K, Chen C and Ma K 2003 IEEE Trans. Electron. Packag. Manuf. 26 141
[44]
Giannuzzi L A 2004 Introduction to Focused Ion Beams:Instrumentation, Theory, Techniques and Practice (Springer)
Chen J, Albella P, Pirzadeh Z, Alonso-González P, Huth F, Bonetti S, Bonanni V, Åkerman J, Nogués J, Vavassori P, Dmitriev A, Aizpurua J and Hillonbrand R 2011 Small 7 2341
[103]
Chen W, Zhang S, Deng Q and Xu H 2018 Nat. Commun. 9 801
[104]
Lu G, De Keersmaecker H, Su L, Kenens B, Rocha S, Fron E, Chen C, Van Dorpe P, Mizuno H, Hofkens J, Hutchison J and Uji-i H 2014 Adv. Mater. 26 5124
[105]
De Angelis F, Das G, Candeloro P, Patrini M, Galli M, Bek A, Lazzarino M, Maksymov I, Liberale C, Andreani L and Di Fabrizio E 2010 Nat. Nanotech. 5 67
[106]
Wei H, Pan D and Xu H 2015 Nanoscale 7 19053
[107]
Wei H, Li Z, Tian X, Wang Z, Cong F, Liu N, Zhang S, Nordlander P, Halas N and Xu H 2011 Nano Lett. 11 471
[108]
Wei H, Wang Z, Tian X, Käll M and Xu H 2011 Nat. Commun. 2 387
[109]
Pan D, Wei H, Gao L and Xu H 2016 Phys. Rev. Lett. 117 166803
[110]
Dicken M, Sweatlock L, Pacifici D, Lezec H, Bhattacharya K and Atwater H 2008 Nano Lett. 8 4048
[111]
Dionne J, Diest K, Sweatlock L and Atwater H 2009 Nano Lett. 9 897
[112]
Li Z, Zhang S, Halas N, Nordlander P and Xu H 2011 Small 7 593
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.