Special Issue:
TOPICAL REVIEW — Nanophotonics
|
|
|
Surface plasmon polariton waveguides with subwavelength confinement |
Longkun Yang(杨龙坤)1, Pan Li(李盼)1, Hancong Wang(汪涵聪)2, Zhipeng Li(李志鹏)1 |
1 The Beijing Key Laboratory for Nano-Photonics and Nano-Structure(NPNS), Center for Condensed Matter Physics, Department of Physics, Capital Normal University, Beijing 100048, China;
2 The Fujian Provincial Key Laboratory of Automotive Electronics and Electric Drive, School of Information Science and Engineering, Fujian University of Technology, Fuzhou 350108, China |
|
|
Abstract Surface plasmon polaritons (SPPs) are evanescent waves propagating along metal-dielectric interfaces, which provide an effective way to realize optical wave guiding with subwavelength confinement. Metallic nanostructures supporting SPPs, that is, plasmonic waveguides, are considered as required components to construct nanophotonic devices and circuits with a high degree of miniaturization and integration. In this paper, various types of plasmonic waveguides operating in the visible, infrared, and terahertz regions are reviewed, and the status of the research on their fundamentals, fabrications, and applications is provided as well. First, we discuss the mechanisms of SPPs beyond the diffraction limit, and their launching methods. Then, the characteristics of SPPs on various plasmonic waveguides are reviewed, including top-down and bottom-up fabricated types. Considering applications, certain prototypes of plasmonic devices and circuits constructed by plasmonic waveguides for bio/chemo sensing, router, and light modulation are demonstrated. Finally, a summary and future outlook of plasmonic waveguides are given.
|
Received: 22 May 2018
Revised: 28 August 2018
Accepted manuscript online:
|
PACS:
|
42.79.Gn
|
(Optical waveguides and couplers)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
11.55.Fv
|
(Dispersion relations)
|
|
78.67.Uh
|
(Nanowires)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704266 and 11774245), the Fok Ying Tung Education Foundation, China (Grant No. 151010), the Scientific Research Base Development Program of Beijing Municipal Commission of Education, China, the General Foundation of Beijing Municipal Commission of Education, China (Grant No. KM201810028006), and the Training Program of the Major Research Plan of Capital Normal University, China. |
Corresponding Authors:
Zhipeng Li
E-mail: zpli@cnu.edu.cn
|
Cite this article:
Longkun Yang(杨龙坤), Pan Li(李盼), Hancong Wang(汪涵聪), Zhipeng Li(李志鹏) Surface plasmon polariton waveguides with subwavelength confinement 2018 Chin. Phys. B 27 094216
|
[1] |
Mekis A, Chen J, Kurl, I, Fan S H, Villeneuve P and Joannopoulos J 1996 Phys. Rev. Lett. 77 3787
|
[2] |
Xia F, Sekaric L and Vlasov Y 2007 Nat. Photon. 1 65
|
[3] |
Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W and Leuthold J 2009 Nat. Photon. 3 216
|
[4] |
Frandsen L, Borel P, Zhuang Y, Harpoth A, Thorhauge M, Kristensen M, Bogaerts W, Dumon P and Baets R 2004 Opt. Lett. 29 1623
|
[5] |
Foster M A, Turner A C, Sharping J E, Schmidt B S, Lipson M and Gaeta A L 2006 Nature 441 960
|
[6] |
Born M and Wolf E 2013 Principles of Optics:Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier)
|
[7] |
Ozbay E 2006 Science 311 189
|
[8] |
Gramotnev D and Bozhevolnyi S 2010 Nat. Photon. 4 83
|
[9] |
Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
|
[10] |
Maier S A 2007 Plasmonics:Fundamentals and Applications (Springer)
|
[11] |
Li Z, Shegai T, Haran G and Xu H 2009 ACS Nano 3 637
|
[12] |
Chuntonov L and Haran G 2011 Nano Lett. 11 2440
|
[13] |
Chuntonov L and Haran G 2011 J. Phys. Chem. C 115 19488
|
[14] |
Wang H, Li Z, Zhang H, Wang P and Wen S 2015 Sci. Rep. 5 8207
|
[15] |
Yang L, Wang H, Fang Y and Li Z 2016 ACS Nano 10 1580
|
[16] |
Xu H, Wang X, Persson M, Xu H, Käll M and Johansson P 2004 Phys. Rev. Lett. 93 243002
|
[17] |
Shegai T, Li Z, Dadosh T, Zhang Z, Xu H and Haran G 2008 Proc. Natl. Acad. Sci. USA 105 16448
|
[18] |
Chuntonov L and Haran G 2013 Nano Lett. 13 1285
|
[19] |
Haran G 2010 Acc. Chem. Res. 43 1135
|
[20] |
Barnes W L, Murray W A, Dintinger J, Devaux E and Ebbesen T 2004 Phys. Rev. Lett. 92 107401
|
[21] |
Wei H, Pan D, Zhang S, Li Z, Li Q, Liu N, Wang W and Xu H 2018 Chem. Rev. 118 2882
|
[22] |
Guo X, Qiu M, Bao J, Wiley B J, Yang Q, Zhang X, Ma Y, Yu H and Tong L 2009 Nano Lett. 9 4515
|
[23] |
Guo X, Ma Y, Wang Y and Tong L 2013 Laser Photon. Rev. 7 855
|
[24] |
Lal S, Hafner J H, Halas N J, Link S and Nordlander P 2012 Acc. Chem. Res. 45 1887
|
[25] |
Huang T, Wang J, Li Z, Liu W, Lin F, Fang Z and Zhu X 2016 Chin. Phys. B 25 087302
|
[26] |
Yang C, Zhao H, Wang P, Li J, Tang P, Qu S, Lin F and Zhu X 2014 Chin. Phys. B 23 117302
|
[27] |
Li Q, Wei H and Xu H 2014 Chin. Phys. B 23 097302
|
[28] |
Wang Y, Zhang L, Mei J, Zhang W and Tong Y 2015 Chin. Phys. B 24 127302
|
[29] |
Li Q, Pan D, Wei H and Xu H 2018 Nano Lett. 18 2009
|
[30] |
Li Q, Wei H and Xu H 2014 Nano Lett. 14 3358
|
[31] |
Barnes W 2006 J. Opt. A:Pure Appl. Opt. 8 S87
|
[32] |
Zia R, Selker M and Brongersma M 2005 Phys. Rev. B 71 165431
|
[33] |
Ropers C, Neacsu C, Elsaesser T, Albrecht M, Raschke M and Lienau C 2007 Nano Lett. 7 2784
|
[34] |
Knight M W, Grady N K, Bardhan R, Hao F, Nordlander P and Halas N J 2007 Nano Lett. 7 2346
|
[35] |
Fang Z, Lu Y, Fan L, Lin C and Zhu X 2010 Plasmonics 5 57
|
[36] |
Fang Z, Fan L, Lin C, Zhang D, Meixner A J and Zhu X 2011 Nano Lett. 11 1676
|
[37] |
Fang Z, Huang S, Zhu X and Fan L 2010 J. Korean Phys. Soc. 56 1725
|
[38] |
Li Z, Hao F, Huang Y, Fang Y, Nordlander P and Xu H 2009 Nano Lett. 9 4383
|
[39] |
Wang W, Yang Q, Fan F, Xu H and Wang Z L 2011 Nano Lett. 11 1603
|
[40] |
Li M, Zou C L, Ren X F, Xiong X, Cai Y J, Guo G P, Tong L M and Guo G C 2015 Nano Lett. 15 2380
|
[41] |
Cai W, Sainidou R, Xu J, Polman A and Javier Garcia de Abajo F 2009 Nano Lett. 9 1176
|
[42] |
Vieu C, Carcenac F, Pepin A, Chen Y, Mejias M, Lebib A, Manin-Ferlazzo L, Couraud L and Launois H 2000 Appl. Sur. Sci. 164 111
|
[43] |
Tseng A, Chen K, Chen C and Ma K 2003 IEEE Trans. Electron. Packag. Manuf. 26 141
|
[44] |
Giannuzzi L A 2004 Introduction to Focused Ion Beams:Instrumentation, Theory, Techniques and Practice (Springer)
|
[45] |
Huang J, Callegari V, Geisler P, Brüning C, Kern J, Prangsma J, Wu X, Feichtner T, Ziegler J and Weinmann P 2010 Nat. Commun. 1 150
|
[46] |
Duan H, Fernández-Domínguez A I, Bosman M, Maier S A and Yang J 2012 Nano Lett. 12 1683
|
[47] |
Manfrinato V R, Zhang L, Su D, Duan H, Hobbs R G, Stach E A and Berggren K K 2013 Nano Lett. 13 1555
|
[48] |
Berini P 1999 Opt. Lett. 24 1011
|
[49] |
Lamprecht B, Krenn J, Schider G, Ditlbacher H, Salerno M, Félidj N, Leitner A, Aussenegg F and Weeber J 2001 Appl. Phys. Lett. 79 51
|
[50] |
Krenn J R, Lamprecht B, Ditlbacher H, Schider G, Leitner A and Aussenegg F 2002 Europhys. Lett. 60 663
|
[51] |
Zia R, Schuller J and Brongersma M 2006 Phys. Rev. B 74 165415
|
[52] |
Weeber J, Krenn J, Dereux A, Lamprecht B, Lacroute Y and Goudonnet J 2001 Phys. Rev. B 64 045411
|
[53] |
Weeber J, Lacroute Y and Dereux A 2003 Phys. Rev. B 68 115401
|
[54] |
Smith C, Stenger N, Kristensen A, Mortensen N A and Bozhevolnyi S I 2015 Nanoscale 7 9355
|
[55] |
Novikov I and Maradudin A 2002 Phys. Rev. B 66 035403
|
[56] |
Bozhevolnyi S, Volkov V, Devaux E, Laluet J and Ebbesen T 2007 Appl. Phys. A 89 225
|
[57] |
Bozhevolnyi S I, Volkov V S, Devaux E and Ebbesen T W 2005 Phys. Rev. Lett. 95 046802
|
[58] |
Bozhevolnyi S and Nerkararyan K 2010 Opt. Lett. 35 541
|
[59] |
Zenin V, Volkov V, Han Z, Bozhevolnyi S, Devaux E and Ebbesen T 2011 J. Opt. Soc. Am. B 28 1596
|
[60] |
Moreno E, Garcia-Vidal F, Rodrigo S, Martin-Moreno L and Bozhevolnyi S 2006 Opt. Lett. 31 3447
|
[61] |
Pile D and Gramotnev D 2005 Opt. Lett. 30 1186
|
[62] |
Volkov V S, Bozhevolnyi S I, Devaux E and Ebbesen T W 2006 Appl. Phys. Lett. 89 143108
|
[63] |
Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y and Ebbesen T W 2006 Nature 440 508
|
[64] |
Volkov V S, Bozhevolnyi S I, Devaux E, Laluet J Y and Ebbesen T W 2007 Nano Lett. 7 880
|
[65] |
Smith C, Desiatov B, Goykmann I, Fernandez-Cuesta I, Levy U and Kristensen A 2012 Opt. Express 20 5696
|
[66] |
Pendry J, Martin-Moreno L and Garcia-Vidal F 2004 Science 305 847
|
[67] |
Hibbins A P, Evans B R and Sambles J R 2005 Science 308 670
|
[68] |
Maier S A, Andrews S R, Martin-Moreno L and Garcia-Vidal F 2006 Phys. Rev. Lett. 97 176805
|
[69] |
Fernández-Domínguez A, Moreno E, Martin-Moreno L and Garcia-Vidal F 2009 Phys. Rev. B 79 233104
|
[70] |
Martin-Cano D, Nesterov M, Fernandez-Dominguez A, Garcia-Vidal F, Martin-Moreno L and Moreno E 2010 Opt. Express 18 754
|
[71] |
Shen X, Cui T, Martin-Cano D and Garcia-Vidal F 2013 Proc. Natl. Acad. Sci. USA 110 40
|
[72] |
Shen X and Cui T 2013 Appl. Phys. Lett. 102 211909
|
[73] |
Shen X and Cui T 2014 Laser Photon. Rev. 8 137
|
[74] |
Ma H, Shen X, Cheng Q, Jiang W and Cui T 2014 Laser Photon. Rev. 8 146
|
[75] |
Zhang Q, Zhang H, Wu H and Cui T 2015 Sci. Rep. 5 16531
|
[76] |
Gao X, Shi J, Shen X, Hui F, Wei X, Li L and Cui T 2013 Appl. Phys. Lett. 102 151912
|
[77] |
Xu J, Yin J, Zhang H and Cui T 2016 Sci. Rep. 6 22692
|
[78] |
Zhang H, Liu S, Shen X, Chen L, Li L and Cui T 2015 Laser Photon. Rev. 9 83
|
[79] |
Faraday M 1857 Philos. Trans. R. Soc. Lond. 147 145
|
[80] |
Xia Y, Xiong Y, Lim B and Skrabalak S 2009 Ang. Chem. Int. Ed. 48 60
|
[81] |
Wiley B, Herricks T, Sun Y and Xia Y 2004 Nano Lett. 4 1733
|
[82] |
Rycenga M, McLellan J M and Xia Y 2008 Adv. Mater. 20 2416
|
[83] |
Gou L and Murphy C J 2005 Chem. Mater. 17 3668
|
[84] |
Sun Y, Mayers B, Herricks T and Xia Y 2003 Nano Lett. 3 955
|
[85] |
Zhang S, Wei H, Bao K, Hakanson U, Halas N, Nordlander P and Xu H 2011 Phys. Rev. Lett. 107 096801
|
[86] |
Li Z, Bao K, Fang Y, Guan Z, Halas N J, Nordlander P and Xu H 2010 Phys. Rev. B 82 241402
|
[87] |
Wei H, Zhang S, Tian X and Xu H 2013 Proc. Natl. Acad. Sci. USA 110 4494
|
[88] |
Sun M, Zhang Z, Wang P, Li Q, Ma F and Xu H 2013 Light Sci. Appl. 2 e112
|
[89] |
Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F and Krenn J 2005 Phys. Rev. Lett. 95 257403
|
[90] |
Li Y, Kang M, Shi J, Wu K, Zhang S and Xu H 2017 Nano Lett. 17 7803
|
[91] |
Zhao N, Wei Y, Sun N, Chen Q, Bai J, Zhou L, Qin Y, Li M and Qi L 2008 Langmuir 24 991
|
[92] |
Anderson L, Zhen Y, Payne C, Nordlander P and Hafner J 2013 Nano Lett. 13 6256
|
[93] |
Anderson L, Payne C, Zhen Y, Nordlander P and Hafner J 2011 Nano Lett. 11 5034
|
[94] |
Lal S, Link S and Halas N 2007 Nat. Photon. 1 641
|
[95] |
Hu H, Duan H, Yang J K and Shen Z X 2012 ACS Nano 6 10147
|
[96] |
Shen S, Meng L, Zhang Y, Han J, Ma Z, Hu S, He Y, Li J, Ren B, Shih T M, Wang Z, Yang Z and Tian Z 2015 Nano Lett. 15 6716
|
[97] |
Luo S, Sivashanmugan K, Liao J, Yao C and Peng H 2014 Biosens. Bioelectron. 61 232
|
[98] |
Willets K 2009 Anal. Bioanal. Chem. 394 85
|
[99] |
Tong L, Righini M, Gonzalez M U, Quidant R and Käll M 2009 Lab Chip 9 193
|
[100] |
Qian X and Nie S 2008 Chem. Soc. Rev. 37 912
|
[101] |
Hering K, Cialla D, Ackermann K, Dorfer T, Moller R, Schneidewind H, Mattheis R, Fritzsche W, Rosch P and Popp J 2008 Anal. Bioanal. Chem. 390 113
|
[102] |
Chen J, Albella P, Pirzadeh Z, Alonso-González P, Huth F, Bonetti S, Bonanni V, Åkerman J, Nogués J, Vavassori P, Dmitriev A, Aizpurua J and Hillonbrand R 2011 Small 7 2341
|
[103] |
Chen W, Zhang S, Deng Q and Xu H 2018 Nat. Commun. 9 801
|
[104] |
Lu G, De Keersmaecker H, Su L, Kenens B, Rocha S, Fron E, Chen C, Van Dorpe P, Mizuno H, Hofkens J, Hutchison J and Uji-i H 2014 Adv. Mater. 26 5124
|
[105] |
De Angelis F, Das G, Candeloro P, Patrini M, Galli M, Bek A, Lazzarino M, Maksymov I, Liberale C, Andreani L and Di Fabrizio E 2010 Nat. Nanotech. 5 67
|
[106] |
Wei H, Pan D and Xu H 2015 Nanoscale 7 19053
|
[107] |
Wei H, Li Z, Tian X, Wang Z, Cong F, Liu N, Zhang S, Nordlander P, Halas N and Xu H 2011 Nano Lett. 11 471
|
[108] |
Wei H, Wang Z, Tian X, Käll M and Xu H 2011 Nat. Commun. 2 387
|
[109] |
Pan D, Wei H, Gao L and Xu H 2016 Phys. Rev. Lett. 117 166803
|
[110] |
Dicken M, Sweatlock L, Pacifici D, Lezec H, Bhattacharya K and Atwater H 2008 Nano Lett. 8 4048
|
[111] |
Dionne J, Diest K, Sweatlock L and Atwater H 2009 Nano Lett. 9 897
|
[112] |
Li Z, Zhang S, Halas N, Nordlander P and Xu H 2011 Small 7 593
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|