CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Structural and electrical properties of carbon-ion-implanted ultrananocrystalline diamond films |
Hui Xu(徐辉)1, Jian-Jun Liu(刘建军)1, Hai-Tao Ye(叶海涛)2, D J Coathup2, A V Khomich3,4, Xiao-Jun Hu(胡晓君)1 |
1 College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China;
2 Aston Institute of Materials Research, School of Engineering and Applied Science, Aston University, Birmingham B4 7ET, United Kingdom;
3 V. A. Kotelnikov Institute of Radio-Engineering and Electronics, Russian Academy of Sciences, Moscow 141190, Russia;
4 National Research Nuclear University MEPhI, Moscow, Russia |
|
|
Abstract We investigate the structural and electrical properties of carbon-ion-implanted ultrananocrystalline diamond (UNCD) films. Impedance spectroscopy measurements show that the impedance of diamond grains is relatively stable, while that of grain boundaries (GBs) (Rb) significantly increases after the C+ implantation, and decreases with the increase in the annealing temperature (Ta) from 650 ℃ to 1000 ℃. This implies that the C+ implantation has a more significant impact on the conductivity of GBs. Conductive atomic force microscopy demonstrates that the number of conductive sites increases in GB regions at Ta above 900 ℃, owing to the formation of a nanographitic phase confirmed by high-resolution transmission electronic microscopy. Visible-light Raman spectra show that resistive trans-polyacetylene oligomers desorb from GBs at Ta above 900 ℃, which leads to lower Rb of samples annealed at 900 and 1000 ℃. With the increase in Ta to 1000 ℃, diamond grains become smaller with longer GBs modified by a more ordered nanographitic phase, supplying more conductive sites and leading to a lower Rb.
|
Received: 13 April 2018
Revised: 17 June 2018
Accepted manuscript online:
|
PACS:
|
61.82.Rx
|
(Nanocrystalline materials)
|
|
81.05.U-
|
(Carbon/carbon-based materials)
|
|
81.05.uj
|
(Diamond/nanocarbon composites)
|
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50972129 and 50602039), the International Science Technology Cooperation Program of China (Grant No. 2014DFR51160), the National Key Research and Development Program of China (Grant No. 2016YFE0133200), European Union's Horizon 2020 Research and Innovation Staff Exchange (RISE) Scheme (Grant No. 734578), One Belt and One Road International Cooperation Project from the Key Research and Development Program of Zhejiang Province, China (Grant No. 2018C04021), and Xinmiao Talents Program of Zhejiang Province, China (Grant No. 2017R403078). |
Corresponding Authors:
Hai-Tao Ye, Xiao-Jun Hu
E-mail: haitao.ye@leicester.ac.uk;huxj@zjut.edu.cn
|
Cite this article:
Hui Xu(徐辉), Jian-Jun Liu(刘建军), Hai-Tao Ye(叶海涛), D J Coathup, A V Khomich, Xiao-Jun Hu(胡晓君) Structural and electrical properties of carbon-ion-implanted ultrananocrystalline diamond films 2018 Chin. Phys. B 27 096104
|
[1] |
Kundrat V, Zhang X, Cooke K, Sun H, Sullivan J and Ye H 2015 AIP. Adv. 5 473
|
[2] |
Li X, Ye J S, Zhang H C, Feng T, Chen J Q and Hu X J 2017 Appl. Surf. Sci. 412 366
|
[3] |
Yang T, Wei Q, Qi Y and Yu Z 2015 Diamond Relat. Mater. 52 49
|
[4] |
Wang J, Firestone M A, Auciello O and Carlisle J A 2004 Langmuir 20 11450
|
[5] |
Garrett D J, Ganesan K, Stacey A, Fox K, Meffin H and Prawer S 2012 J. Neural. Eng. 9 016002
|
[6] |
Jiang M Y, Yu H, Li X, Lu S H and Hu X J 2017 Electrochim. Acta 258 61
|
[7] |
Sankaran K, Srinivasu K, Yeh C, Thomas J, Drijkoningen S, Pobedinskas P, Sundaravel B, Leou K C, Leung K T, Van Bael M K, Schreck M, Lin I N and Haenen K 2017 Appl. Phys. Lett. 110 261602
|
[8] |
Zkria A and Yoshitake T 2016 Compound Semiconductor Week, Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS), June 26-30, 2016, Toyama, Japan, p. 2016
|
[9] |
Zimmermann T, Kubovic M, Denisenko A, Janischowsky K, Williams O A, Gruen D and Kohna E 2005 Diamond Relat. Mater. 14 416
|
[10] |
Panda K, Sundaravel B, Panigrahi B, Magudapathy P, Nandagopala Krishna D, Nair K, Chen H C and Lin I N 2011 J. Appl. Phys. 110 044304
|
[11] |
Zapol P, Sternberg M, Curtiss L A, Frauenheim T and Gruen D M 2001 Phys. Rev. B 65 045403
|
[12] |
Hu X J, Ye J S, Liu H J, Shen Y G, Chen X H and Hu H 2011 J. Appl. Phys. 109 053524
|
[13] |
Hu X J, Ye J S, Hu H, Chen X H and Shen Y G 2011 Appl. Phys. Lett. 99 131902
|
[14] |
Hu X J, Chen C K and Lu S H 2016 Carbon 98 671
|
[15] |
Sankaran K J, Panda K, Sundaravel B, Chen H C, Lin I N, Lee C Y and Tai N H 2012 ACS. Appl. Mater. Inter. 4 4169
|
[16] |
Sankaran K J, Lin Y F, Jian W B, Chen H C, Panda K, Sundaravel B, Dong C L, Tai N H and Lin I N 2013 ACS Appl. Mater. Inter. 5 1294
|
[17] |
Arenal R, Bruno P, Miller D, Bleuel M, Lal J and Gruen D 2007 Phys. Rev. B 75 195431
|
[18] |
Sankaran K, Panda K, Sundaravel B, Tai N and Lin I N 2014 J. Appl. Phys. 115 063701
|
[19] |
Sankaran K J, Kunuku S, Sundaravel B, Hsieh P Y, Chen H C, Leou K C, Tai N H and Lin I N 2015 Nanoscale 7 4377
|
[20] |
Joseph P, Tai N, Chen C, Niu H, Cheng H, Pong W and Lin I N 2009 J. Phys. D:Appl. Phys. 42 105403
|
[21] |
Uzan Saguy C, Cytermann C, Brener R, Richter V, Shaanan M and Kalish R 1995 Appl. Phys. Lett. 67 1194
|
[22] |
Prawer S and Kalish R 1995 Phys. Rev. B 51 15711
|
[23] |
Bevilacqua M, Tumilty N, Mitra C, Ye H, Feygelson T, Butler J E and Jackman R B 2010 J. Appl. Phys. 107 033716
|
[24] |
Kleitz M, Kennedy J, Vashishta P, Mundy J and Shenoy G 1979 Fast Ion Transport in Solids (Noth Holland:Elsevier) p. 185
|
[25] |
Mcdonald J R, 1987 Impedance Spectroscopy Emphasizing Solid Materials and Systems (Wiley)
|
[26] |
O'Donnell K M, Edmonds M T, Tadich A, Thomsen L, Stacey A, Schenk A, Pakes C I and Ley L 2015 Phys. Rev. B 92 035303
|
[27] |
Liao M, Liu J, Sang L, Coathup D, Li J, Imura M, Koide Y and Ye H T 2015 Appl. Phys. Lett. 106 083506
|
[28] |
Ueda K, Kasu M, Yamauchi Y, Makimoto T, Schwitters M, Twitchen D J, Scarsbrook G A and Coe S E 2006 IEEE Electron. Dev. Lett. 27 570
|
[29] |
Xu H, Ye H T, Coathup D, Mitrovic I Z, Weerakkody A D and Hu X J 2017 Appl. Phys. Lett. 110 033102
|
[30] |
Xiao X, Birrell J, Gerbi J E, Auciello O and Carlisle J A 2004 J. Appl. Phys. 96 2232
|
[31] |
Lespade P, Al-Jishi R and Dresselhaus M S 1982 Carbon 20 427
|
[32] |
Prawer S, Nugent K W, Jamieson D N, Orwa J O, Bursill L A and Peng J L 2000 Chem. Phys. Lett. 332 93
|
[33] |
Vlasov I I, Ralchenko V G, Goovaerts E, Saveliev A V and Kanzyuba M V 2006 Phys. Status Sol. A 203 3028
|
[34] |
Chhowalla M, Ferrari A, Robertson J and Amaratunga G 2000 Appl. Phys. Lett. 76 1419
|
[35] |
Ferrari A C and Robertson J 2004 Philos. T. R. Soc. A 362 247
|
[36] |
Conwell E, Mizes H and Jeyadev S 1989 Phys. Rev. B 40 1630
|
[37] |
Alcantar-Peña J J, Montes J, Arellano-Jimenez M J, Aguilar J O, Berman-Mendoza D, García R, Yacaman M J and Auciello O 2016 Diamond Relat. Mater. 69 207
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|