Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 096104    DOI: 10.1088/1674-1056/27/9/096104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structural and electrical properties of carbon-ion-implanted ultrananocrystalline diamond films

Hui Xu(徐辉)1, Jian-Jun Liu(刘建军)1, Hai-Tao Ye(叶海涛)2, D J Coathup2, A V Khomich3,4, Xiao-Jun Hu(胡晓君)1
1 College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China;
2 Aston Institute of Materials Research, School of Engineering and Applied Science, Aston University, Birmingham B4 7ET, United Kingdom;
3 V. A. Kotelnikov Institute of Radio-Engineering and Electronics, Russian Academy of Sciences, Moscow 141190, Russia;
4 National Research Nuclear University MEPhI, Moscow, Russia
Abstract  

We investigate the structural and electrical properties of carbon-ion-implanted ultrananocrystalline diamond (UNCD) films. Impedance spectroscopy measurements show that the impedance of diamond grains is relatively stable, while that of grain boundaries (GBs) (Rb) significantly increases after the C+ implantation, and decreases with the increase in the annealing temperature (Ta) from 650 ℃ to 1000 ℃. This implies that the C+ implantation has a more significant impact on the conductivity of GBs. Conductive atomic force microscopy demonstrates that the number of conductive sites increases in GB regions at Ta above 900 ℃, owing to the formation of a nanographitic phase confirmed by high-resolution transmission electronic microscopy. Visible-light Raman spectra show that resistive trans-polyacetylene oligomers desorb from GBs at Ta above 900 ℃, which leads to lower Rb of samples annealed at 900 and 1000 ℃. With the increase in Ta to 1000 ℃, diamond grains become smaller with longer GBs modified by a more ordered nanographitic phase, supplying more conductive sites and leading to a lower Rb.

Keywords:  ultrananocrystalline diamond      C-ion implantation      annealing      electrical properties  
Received:  13 April 2018      Revised:  17 June 2018      Accepted manuscript online: 
PACS:  61.82.Rx (Nanocrystalline materials)  
  81.05.U- (Carbon/carbon-based materials)  
  81.05.uj (Diamond/nanocarbon composites)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 50972129 and 50602039), the International Science Technology Cooperation Program of China (Grant No. 2014DFR51160), the National Key Research and Development Program of China (Grant No. 2016YFE0133200), European Union's Horizon 2020 Research and Innovation Staff Exchange (RISE) Scheme (Grant No. 734578), One Belt and One Road International Cooperation Project from the Key Research and Development Program of Zhejiang Province, China (Grant No. 2018C04021), and Xinmiao Talents Program of Zhejiang Province, China (Grant No. 2017R403078).

Corresponding Authors:  Hai-Tao Ye, Xiao-Jun Hu     E-mail:  haitao.ye@leicester.ac.uk;huxj@zjut.edu.cn

Cite this article: 

Hui Xu(徐辉), Jian-Jun Liu(刘建军), Hai-Tao Ye(叶海涛), D J Coathup, A V Khomich, Xiao-Jun Hu(胡晓君) Structural and electrical properties of carbon-ion-implanted ultrananocrystalline diamond films 2018 Chin. Phys. B 27 096104

[1] Kundrat V, Zhang X, Cooke K, Sun H, Sullivan J and Ye H 2015 AIP. Adv. 5 473
[2] Li X, Ye J S, Zhang H C, Feng T, Chen J Q and Hu X J 2017 Appl. Surf. Sci. 412 366
[3] Yang T, Wei Q, Qi Y and Yu Z 2015 Diamond Relat. Mater. 52 49
[4] Wang J, Firestone M A, Auciello O and Carlisle J A 2004 Langmuir 20 11450
[5] Garrett D J, Ganesan K, Stacey A, Fox K, Meffin H and Prawer S 2012 J. Neural. Eng. 9 016002
[6] Jiang M Y, Yu H, Li X, Lu S H and Hu X J 2017 Electrochim. Acta 258 61
[7] Sankaran K, Srinivasu K, Yeh C, Thomas J, Drijkoningen S, Pobedinskas P, Sundaravel B, Leou K C, Leung K T, Van Bael M K, Schreck M, Lin I N and Haenen K 2017 Appl. Phys. Lett. 110 261602
[8] Zkria A and Yoshitake T 2016 Compound Semiconductor Week, Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS), June 26-30, 2016, Toyama, Japan, p. 2016
[9] Zimmermann T, Kubovic M, Denisenko A, Janischowsky K, Williams O A, Gruen D and Kohna E 2005 Diamond Relat. Mater. 14 416
[10] Panda K, Sundaravel B, Panigrahi B, Magudapathy P, Nandagopala Krishna D, Nair K, Chen H C and Lin I N 2011 J. Appl. Phys. 110 044304
[11] Zapol P, Sternberg M, Curtiss L A, Frauenheim T and Gruen D M 2001 Phys. Rev. B 65 045403
[12] Hu X J, Ye J S, Liu H J, Shen Y G, Chen X H and Hu H 2011 J. Appl. Phys. 109 053524
[13] Hu X J, Ye J S, Hu H, Chen X H and Shen Y G 2011 Appl. Phys. Lett. 99 131902
[14] Hu X J, Chen C K and Lu S H 2016 Carbon 98 671
[15] Sankaran K J, Panda K, Sundaravel B, Chen H C, Lin I N, Lee C Y and Tai N H 2012 ACS. Appl. Mater. Inter. 4 4169
[16] Sankaran K J, Lin Y F, Jian W B, Chen H C, Panda K, Sundaravel B, Dong C L, Tai N H and Lin I N 2013 ACS Appl. Mater. Inter. 5 1294
[17] Arenal R, Bruno P, Miller D, Bleuel M, Lal J and Gruen D 2007 Phys. Rev. B 75 195431
[18] Sankaran K, Panda K, Sundaravel B, Tai N and Lin I N 2014 J. Appl. Phys. 115 063701
[19] Sankaran K J, Kunuku S, Sundaravel B, Hsieh P Y, Chen H C, Leou K C, Tai N H and Lin I N 2015 Nanoscale 7 4377
[20] Joseph P, Tai N, Chen C, Niu H, Cheng H, Pong W and Lin I N 2009 J. Phys. D:Appl. Phys. 42 105403
[21] Uzan Saguy C, Cytermann C, Brener R, Richter V, Shaanan M and Kalish R 1995 Appl. Phys. Lett. 67 1194
[22] Prawer S and Kalish R 1995 Phys. Rev. B 51 15711
[23] Bevilacqua M, Tumilty N, Mitra C, Ye H, Feygelson T, Butler J E and Jackman R B 2010 J. Appl. Phys. 107 033716
[24] Kleitz M, Kennedy J, Vashishta P, Mundy J and Shenoy G 1979 Fast Ion Transport in Solids (Noth Holland:Elsevier) p. 185
[25] Mcdonald J R, 1987 Impedance Spectroscopy Emphasizing Solid Materials and Systems (Wiley)
[26] O'Donnell K M, Edmonds M T, Tadich A, Thomsen L, Stacey A, Schenk A, Pakes C I and Ley L 2015 Phys. Rev. B 92 035303
[27] Liao M, Liu J, Sang L, Coathup D, Li J, Imura M, Koide Y and Ye H T 2015 Appl. Phys. Lett. 106 083506
[28] Ueda K, Kasu M, Yamauchi Y, Makimoto T, Schwitters M, Twitchen D J, Scarsbrook G A and Coe S E 2006 IEEE Electron. Dev. Lett. 27 570
[29] Xu H, Ye H T, Coathup D, Mitrovic I Z, Weerakkody A D and Hu X J 2017 Appl. Phys. Lett. 110 033102
[30] Xiao X, Birrell J, Gerbi J E, Auciello O and Carlisle J A 2004 J. Appl. Phys. 96 2232
[31] Lespade P, Al-Jishi R and Dresselhaus M S 1982 Carbon 20 427
[32] Prawer S, Nugent K W, Jamieson D N, Orwa J O, Bursill L A and Peng J L 2000 Chem. Phys. Lett. 332 93
[33] Vlasov I I, Ralchenko V G, Goovaerts E, Saveliev A V and Kanzyuba M V 2006 Phys. Status Sol. A 203 3028
[34] Chhowalla M, Ferrari A, Robertson J and Amaratunga G 2000 Appl. Phys. Lett. 76 1419
[35] Ferrari A C and Robertson J 2004 Philos. T. R. Soc. A 362 247
[36] Conwell E, Mizes H and Jeyadev S 1989 Phys. Rev. B 40 1630
[37] Alcantar-Peña J J, Montes J, Arellano-Jimenez M J, Aguilar J O, Berman-Mendoza D, García R, Yacaman M J and Auciello O 2016 Diamond Relat. Mater. 69 207
[1] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[2] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[3] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[4] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[5] Introducing voids around the interlayer of AlN by high temperature annealing
Jianwei Ben(贲建伟), Jiangliu Luo(罗江流), Zhichen Lin(林之晨), Xiaojuan Sun(孙晓娟), Xinke Liu(刘新科), and Xiaohua Li(黎晓华). Chin. Phys. B, 2022, 31(7): 076104.
[6] Radiation effects of 50-MeV protons on PNP bipolar junction transistors
Yuan-Ting Huang(黄垣婷), Xiu-Hai Cui(崔秀海), Jian-Qun Yang(杨剑群), Tao Ying(应涛), Xue-Qiang Yu(余雪强), Lei Dong(董磊), Wei-Qi Li(李伟奇), and Xing-Ji Li(李兴冀). Chin. Phys. B, 2022, 31(2): 028502.
[7] Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Zi-Liang Huang(黄子亮), Wen-Bo Sun(孙文博), and Yi-Yi Li(李依依). Chin. Phys. B, 2022, 31(1): 014402.
[8] Protection of isolated and active regions in AlGaN/GaN HEMTs using selective laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Qing Guo(郭清), and Kuang Sheng(盛况). Chin. Phys. B, 2021, 30(9): 097302.
[9] Achieving high-performance multilayer MoSe2 photodetectors by defect engineering
Jintao Hong(洪锦涛), Fengyuan Zhang(张丰源), Zheng Liu(刘峥), Jie Jiang(蒋杰), Zhangting Wu(吴章婷), Peng Zheng(郑鹏), Hui Zheng(郑辉), Liang Zheng(郑梁), Dexuan Huo(霍德璇), Zhenhua Ni(倪振华), and Yang Zhang(张阳). Chin. Phys. B, 2021, 30(8): 087801.
[10] In-situ TEM observation of the evolution of helium bubbles in Mo during He+ irradiation and post-irradiation annealing
Yi-Peng Li(李奕鹏), Guang Ran(冉广), Xin-Yi Liu(刘歆翌), Xi Qiu(邱玺), Qing Han(韩晴), Wen-Jie Li(李文杰), and Yi-Jia Guo(郭熠佳). Chin. Phys. B, 2021, 30(8): 086109.
[11] Impact of O2 post oxidation annealing on the reliability of SiC/SiO2 MOS capacitors
Peng Liu(刘鹏), Ji-Long Hao(郝继龙), Sheng-Kai Wang(王盛凯), Nan-Nan You(尤楠楠), Qin-Yu Hu(胡钦宇), Qian Zhang(张倩), Yun Bai(白云), and Xin-Yu Liu(刘新宇). Chin. Phys. B, 2021, 30(7): 077303.
[12] Fabrication and characterization of Al-Mn superconducting films for applications in TES bolometers
Qing Yu(余晴), Yi-Fei Zhang(张翼飞), Chang-Hao Zhao(赵昌昊), Kai-Yong He(何楷泳), Ru-Tian Huang(黄汝田), Yong-Cheng He(何永成), Xin-Yu Wu(吴歆宇), Jian-She Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(7): 077402.
[13] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[14] Understanding the synergistic effect of mixed solvent annealing on perovskite film formation
Kun Qian(钱昆), Yu Li(李渝), Jingnan Song(宋静楠), Jazib Ali, Ming Zhang(张明), Lei Zhu(朱磊), Hong Ding(丁虹), Junzhe Zhan(詹俊哲), and Wei Feng(冯威). Chin. Phys. B, 2021, 30(6): 068103.
[15] Quantum annealing for semi-supervised learning
Yu-Lin Zheng(郑玉鳞), Wen Zhang(张文), Cheng Zhou(周诚), and Wei Geng(耿巍). Chin. Phys. B, 2021, 30(4): 040306.
No Suggested Reading articles found!