|
|
High quality PdTe2 thin films grown by molecular beam epitaxy |
En Li(李恩)1, Rui-Zi Zhang(张瑞梓)1, Hang Li(李航)1, Chen Liu(刘晨)2, Geng Li(李更)1, Jia-Ou Wang(王嘉鸥)2, Tian Qian(钱天)1, Hong Ding(丁洪)1, Yu-Yang Zhang(张余洋)1, Shi-Xuan Du(杜世萱)1, Xiao Lin(林晓)1, Hong-Jun Gao(高鸿钧)1 |
1 Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China;
2 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract PdTe2, a member of layered transition metal dichalcogenides (TMDs), has aroused significant research interest due to the coexistence of superconductivity and type-Ⅱ Dirac fermions. It provides a promising platform to explore the interplay between superconducting quasiparticles and Dirac fermions. Moreover, PdTe2 has also been used as a substrate for monolayer antimonene growth. Here in this paper, we report the epitaxial growth of high quality PdTe2 films on bilayer graphene/SiC(0001) by molecular beam epitaxy (MBE). Atomically thin films are characterized by scanning tunneling microscopy (STM), X-ray photoemission spectroscopy (XPS), low-energy electron diffraction (LEED), and Raman spectroscopy. The band structure of 6-layer PdTe2 film is measured by angle-resolved photoemission spectroscopy (ARPES). Moreover, our air exposure experiments show excellent chemical stability of epitaxial PdTe2 film. High-quality PdTe2 films provide opportunities to build antimonene/PdTe2 heterostructure in ultrahigh vacuum for future applications in electronic and optoelectronic nanodevices.
|
Received: 28 April 2018
Revised: 04 May 2018
Accepted manuscript online:
|
PACS:
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
68.55.-a
|
(Thin film structure and morphology)
|
|
81.15.Hi
|
(Molecular, atomic, ion, and chemical beam epitaxy)
|
|
61.05.jh
|
(Low-energy electron diffraction (LEED) and reflection high-energy electron diffraction (RHEED))
|
|
Corresponding Authors:
Xiao Lin, Hong-Jun Gao
E-mail: xlin@ucas.ac.cn;hjgao@iphy.ac.cn
|
Cite this article:
En Li(李恩), Rui-Zi Zhang(张瑞梓), Hang Li(李航), Chen Liu(刘晨), Geng Li(李更), Jia-Ou Wang(王嘉鸥), Tian Qian(钱天), Hong Ding(丁洪), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱), Xiao Lin(林晓), Hong-Jun Gao(高鸿钧) High quality PdTe2 thin films grown by molecular beam epitaxy 2018 Chin. Phys. B 27 086804
|
[1] |
Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263
|
[2] |
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
|
[3] |
Jariwala D, Davoyan A R, Wong J and Atwater H A 2017 ACS Photon. 4 2962
|
[4] |
Mak K F, McGill K L, Park J and McEuen P L 2014 Science 344 1489
|
[5] |
Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y, Ruan W, Ojeda-Aristizabal C, Ryu H, Edmonds M T and Tsai H Z 2016 Nat. Phys. 12 92
|
[6] |
Sipos B, Kusmartseva A F, Akrap A, Berger H, Forro L and Tutis E 2008 Nat. Mater. 7 960
|
[7] |
Chen P, Chan Y H, Fang X Y, Zhang Y, Chou M Y, Mo S K, Hussain Z, Fedorov A V and Chiang T C 2015 Nat. Commun. 6 8943
|
[8] |
Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M and Ong N 2014 Nature 514 205
|
[9] |
Wang Y, Li L, Yao W, Song S, Sun J, Pan J, Ren X, Li C, Okunishi E and Wang Y Q 2015 Nano Lett. 15 4013
|
[10] |
Ugeda M M, Bradley A J, Shi S F, Felipe H, Zhang Y, Qiu D Y, Ruan W, Mo S K, Hussain Z and Shen Z X 2014 Nat. Mater. 13 1091
|
[11] |
Zhang Y, Chang T R, Zhou B, Cui Y T, Yan H, Liu Z, Schmitt F, Lee J, Moore R and Chen Y 2013 Nat. Nanotechnol. 9 111
|
[12] |
Roberts B W 1976 J. Phys. Chem. Ref. Data 5 581
|
[13] |
Fei F, Bo X, Wang R, Wu B, Jiang J, Fu D, Gao M, Zheng H, Chen Y and Wang X 2017 Phys. Rev. B 96 041201
|
[14] |
Frindt R 1972 Phys. Rev. Lett. 28 299
|
[15] |
Huang H, Zhou S and Duan W 2016 Phys. Rev. B 94 121117
|
[16] |
Yan M, Huang H, Zhang K, Wang E, Yao W, Deng K, Wan G, Zhang H, Arita M and Yang H 2017 Nat. Commun. 8 257
|
[17] |
Zhang K, Yan M, Zhang H, Huang H, Arita M, Sun Z, Duan W, Wu Y and Zhou S 2017 Phys. Rev. B 96 125102
|
[18] |
Noh H J, Jeong J, Cho E J, Kim K, Min B and Park B G 2017 Phys. Rev. Lett. 119 016401
|
[19] |
Clark O J, Neat M J, Okawa K, Bawden L, Marković I, Mazzola F, Feng J, Sunko V, Riley J M and Meevasana W 2018 Phys. Rev. Lett. 120 156401
|
[20] |
Zhang S, Yan Z, Li Y, Chen Z and Zeng H 2015 Angew. Chem. 127 3155
|
[21] |
Wu X, Shao Y, Liu H, Feng Z, Wang Y L, Sun J T, Liu C, Wang J O, Liu Z L and Zhu S Y 2017 Adv. Mater. 29 1605407
|
[22] |
Chen X, Yang Q, Meng R, Jiang J, Liang Q, Tan C and Sun X 2016 J. Mater. Chem. C 4 5434
|
[23] |
Pizzi G, Gibertini M, Dib E, Marzari N, Iannaccone G and Fiori G 2016 Nat. Commun. 7 12585
|
[24] |
Wang Q, Zhang W, Wang L, He K, Ma X and Xue Q 2013 J. Phys.: Condens. Matter 25 095002
|
[25] |
Riedl C, Starke U, Bernhardt J, Franke M and Heinz K 2007 Phys. Rev. B 76 245406
|
[26] |
Peng J P, Guan J Q, Zhang H M, Song C L, Wang L, He K, Xue Q K and Ma X C 2015 Phys. Rev. B 91 121113
|
[27] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[28] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[29] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[30] |
Predel B Pd-Te (Palladium-Tellurium): Datasheet from Landolt-Börnstein – Group IV Physical Chemistry, Volume 5I: “Ni-Np-Pt-Zr” in SpringerMaterials (Berlin Heidelberg: Springer-Verlag)
|
[31] |
Elvy S, Williams P and Buckley A 1996 Surf. Interface Anal. 24 641
|
[32] |
Yan M, Wang E, Zhou X, Zhang G, Zhang H, Zhang K, Yao W, Lu N, Yang S and Wu S 2017 2D Materials 4 045015
|
[33] |
Zhang Y, Ugeda M M, Jin C, Shi S F, Bradley A J, Martín Recio A, Ryu H, Kim J, Tang S and Kim Y 2016 Nano Lett. 16 2485
|
[34] |
Walsh L A and Hinkle C L 2017 Appl. Mater. Today 9 504
|
[35] |
Kolobov A V and Tominaga J 2016 Two-Dimensional Transition-Metal Dichalcogenides, Vol. 239 (Springer)
|
[36] |
Vymazalová A, Zaccarini F and Bakker R J 2014 Eur. J. Mineral. 26 711
|
[37] |
O'Brien M, McEvoy N, Motta C, Zheng J Y, Berner N C, Kotakoski J, Elibol K, Pennycook T J, Meyer J C and Yim C 2016 2D Materials 3 021004
|
[38] |
Lee C, Yan H, Brus L E, Heinz T F, Hone J and Ryu S 2010 ACS Nano 4 2695
|
[39] |
Liu Y, Zhao J Z, Yu L, Lin C T, Liang A J, Hu C, Ding Y, Xu Y, He S L, Zhou L, Liu G D, Dong X L, Zhang J, Chen C T, Xu Z Y, Wen H M, Dai X, Fang Z and Zhou X J 2015 Chin. Phys. Lett. 32 067303
|
[40] |
Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X and Shan W Y 2010 Nat. Phys. 6 584
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|