Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 086101    DOI: 10.1088/1674-1056/27/8/086101
Special Issue: SPECIAL TOPIC — Nanophotonics
SPECIAL TOPIC—Nanophotonics Prev   Next  

Sputtered gold nanoparticles enhanced quantum dot light-emitting diodes

Abida Perveen1, Xin Zhang(张欣)2, Jia-Lun Tang(汤加仑)2, Deng-Bao Han(韩登宝)2, Shuai Chang(常帅)2, Luo-Gen Deng(邓罗根)1, Wen-Yu Ji(纪文宇)3, Hai-Zheng Zhong(钟海政)2
1 Department of Physics, Beijing Institute of Technology, Beijing 100081, China;
2 Department of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China;
3 Department of Physics, Jilin University, Changchun 130023, China
Abstract  

Surface plasmonic effects of metallic particles have been known to be an effective method to improve the performances of light emitting didoes. In this work, we report the sputtered Au nanoparticles enhanced electroluminescence in inverted quantum dot light emitting diodes (ITO/Au NPs/ZnMgO/QDs/TFB/PEDOT:PSS/Al). By combining the time-resolved photoluminescence, transient electroluminescence, and ultraviolet photoelectron spectrometer measurements, the enhancement of the internal field enhanced exciton coupling to surface plasmons and the electron injection rate increasing with Au nanoparticles' incorporation can be explained. Phenomenological numerical calculations indicate that the electron mobility of the electron transport layer increases from 1.39×10-5 cm2/V·s to 1.91×10-5 cm2/V·s for Au NPs modified device. As a result, the maximum device luminescence is enhanced by 1.41 fold (from 14600 cd/cm2 to 20720 cd/cm2) and maximum current efficiency is improved by 1.29 fold (from 3.12 cd/A to 4.02 cd/A).

Keywords:  gold nanoparticles      plasmonic effect      quantum dots      light-emitting diodes  
Received:  30 December 2017      Revised:  16 January 2018      Accepted manuscript online: 
PACS:  61.46.Df (Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 21603012, 61735004, and 61722502).

Corresponding Authors:  Shuai Chang, Hai-Zheng Zhong     E-mail:  schang@bit.edu.cn;hzzhong@bit.edu.cn

Cite this article: 

Abida Perveen, Xin Zhang(张欣), Jia-Lun Tang(汤加仑), Deng-Bao Han(韩登宝), Shuai Chang(常帅), Luo-Gen Deng(邓罗根), Wen-Yu Ji(纪文宇), Hai-Zheng Zhong(钟海政) Sputtered gold nanoparticles enhanced quantum dot light-emitting diodes 2018 Chin. Phys. B 27 086101

[1] Dai X, Deng Y, Peng X and Jin Y 2017 Adv. Mater. 29 07022
[2] Gong X, Yang Z, Walters G, Comin R, Ning Z, Beauregard E, Adinolfi V, Vozny O and Sargent E H 2016 Nat. Photon. 1 11
[3] Ji W, Wang T, Zhu B, Zhang H, Wang R, Zhang D, Chen L, Yang Q and Zhang H 2017 J. Mater. Chem. C 5 00514
[4] Cao F, Wang H, Shen P, Li X, Zheng Y, Shang Y, Zhang J, Ning Z and Yang X 2017 Adv. Mater. 27 04278
[5] Chang S, Zhang X, Wang Z W, Han D B, Tang J L, Bai Z and Zhong H Z IEEE J. Selec. Top. Quantum Electron 27 2688706
[6] Persano L, Catellani A, Dagdeviren C, Ma Y, Guo X, Huang Y, Calzolari A and Pisignano D 2016 Adv. Mater. 28 06381
[7] Yu R, Yin F Huanga X and Ji W 2017 J. Mater. Chem. 5 0514
[8] Pan J, Chen J, Zhao D, Huang Q, Khan Q, Liu X, Tao Z, Zhang Z and Lei W 2016 Opt. Express 24 000A33
[9] Chuang S H and Wuu D S 2015 SPIE 5 005949
[10] Shen H, Cao W, Shewmon N T, Yang C, Li L S and Xue J 2015 Nano Lett. 15 1211
[11] Zaiats G, Ikeda S, Kinge S and Kamat P V 2017 ACS Appl. Mater. Interfaces 9 07893
[12] Wang W, Peng H and Chen S 2016 J. Mater. Chem. C 4 04223
[13] Castan A, Kim H M and Jang J 2014 ACS Appl. Mater. Interfaces 6 04876
[14] Rad A G, Abbasi H and Afzali M H Phys. Proc. 22 032
[15] Kwak J, Bae W K, Lee D, Park I, Lim J, Park M, Cho H, Woo H, Voon D V, Char K and Lee S 2012 Nano Lett. 12 3003254
[16] Heo M, Cho H, Jung J W, Jeong J R, Park S and Kim J Y 2011 Adv. Mater. 23 5689
[17] Shirasaki Y, Supran G J, Bawendi M G and Bulovic V 2013 Nat. Photon. 7 328
[18] Brogersma M L and Kik P G 2007 Surface Plasmon Nanophotonics (New York: Springer)
[19] Okamoto K, Wang Z M and Neogi A 2010 Nanoscale Photonics and Optoelectronics (Springer Science, Japan)
[20] Wang H, L-Van Q, Assime A, Roux X L, Charra F, Chauvin N and Degiron A 2017 Adv. Opt. Mater. 17 00658
[21] Ji W, Jing P and Zhao J 2013 J. Mater. Chem. C 1 470
[22] Zhang X, Marocico C A, Lunz M, Gerard V A Gunko Y K, Lesnyak V, Gaponik N, Sucha A S, Rogach A L and Bradley A L 2014 ACS Nano 8 1273
[23] Kvitek O, Seigel J, Hunatowio V and Svorik V 2013 J. Nanomaterials 1 743684
[24] Lu L, Luo Z, Xu T and Yu L 2013 Nano Lett. 13 59
[25] Shaojian H, Jun L and Zhanao T 2013 Prog. Phys. 33 0542
[26] Stouwdam J W and Janssen R A J 2008 J. Mater. Chem. 18 1889
[27] Hines M A and Sionnest P G 1996 J. Phys. Chem. 100 468
[28] Qian L, Zheng Y, Xue J and Holloway P H 2011 Nat. Photon. 5 543
[29] Shen H, Lin Q, Cao W, Yang C, Shewmon N T, Wang H, Niu J, Li L S and Xue J 2017 Nano Lett. 9 13583
[30] Bae W K, Lim J, Lee D, Park M, Lee H, Kwak J, Char K, Lee C and Lee S 2014 Adv. Mater. 4 00139
[31] Wang Z, Chen Z, Lan Z, Zhai X Du W and Gong Q 2007 Appl. Phys. Lett. 90 151119
[32] Kim N Y, Hong S H, Kang J W, Myoung N S, Yim S Y, Jung S, Lee K, Tu C W and Park S J 2015 RSC Adv. 5 15585
[33] Pinner D J, Friend R H and Tessler N 1999 J. Appl. Phys. 86 371488
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[5] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[6] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[7] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[8] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[9] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[10] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[11] Exciton emission dynamics in single InAs/GaAs quantum dots due to the existence of plasmon-field-induced metastable states in the wetting layer
Junhui Huang(黄君辉), Hao Chen(陈昊), Zhiyao Zhuo(卓志瑶), Jian Wang(王健), Shulun Li(李叔伦), Kun Ding(丁琨), Haiqiao Ni(倪海桥), Zhichuan Niu(牛智川), Desheng Jiang(江德生), Xiuming Dou(窦秀明), and Baoquan Sun(孙宝权). Chin. Phys. B, 2021, 30(9): 097805.
[12] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[13] Large-area fabrication: The next target of perovskite light-emitting diodes
Hang Su(苏杭), Kun Zhu(朱坤), Jing Qin(钦敬), Mengyao Li(李梦瑶), Yulin Zuo(左郁琳), Yunzheng Wang(王允正), Yinggang Wu(吴迎港), Jiawei Cao(曹佳维), and Guolong Li(李国龙). Chin. Phys. B, 2021, 30(8): 088502.
[14] Phase- and spin-dependent manipulation of leakage of Majorana mode into double quantum dot
Fu-Bin Yang(羊富彬), Gan Ren(任淦), and Lin-Guo Xie(谢林果). Chin. Phys. B, 2021, 30(7): 078505.
[15] Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure
Wei-Jiang Gong(公卫江), Yu-Hang Xue(薛宇航), Xiao-Qi Wang(王晓琦), Lian-Lian Zhang(张莲莲), and Guang-Yu Yi(易光宇). Chin. Phys. B, 2021, 30(7): 077307.
No Suggested Reading articles found!