Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 048401    DOI: 10.1088/1674-1056/27/4/048401
Special Issue: SPECIAL TOPIC — Recent advances in thermoelectric materials and devices
SPECIAL TOPIC—Recent advances in thermoelectric materials and devices Prev   Next  

Enhancement of thermoelectric properties of SrTiO3/LaNb-SrTiO3 composite by different doping levels

Ke-Xian Wang(王柯鲜)1, Jun Wang(王俊)1, Yan Li(李艳)2, Tao Zou(邹涛)3, Xiao-Huan Wang(王晓欢)1, Jian-Bo Li(李建波)1, Zheng Cao(曹正)1, Wen-Jing Shi(师文静)1, Xinba Yaer(新巴雅尔)1
1. School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, Inner Mongolia Autonomous Region, China;
2. School of Chemical Engineering, Kang Ba Shi Qu, Ordos, Ordos Institute of Technology, Ordos 017000, Inner Mongolia Autonomous Region, China;
3. Beijing Center for Physical & Chemical Analysis, No. 27 Xi Sanhuan Road, Haidian District, Beijing 100089, China
Abstract  Strontium titanate (STO) is an n-type oxide thermoelectric material, which has shown great prospects in recent years. The doping of La and Nb into STO can improve its power factor, whereas its thermal conductivity is still very high. Thus, in order to obtain a high thermoelectric figure-of-merit zT, it is very important to reduce its thermal conductivity. In this paper, using a combination of a hydrothermal method and a high-efficiency sintering method, we succeed in preparing a composite of pure STO and LaNb-doped STO, which simultaneously realizes lower thermal conductivity and higher Seebeck coefficient, therefore, the thermoelectric properties of STO are significantly improved. In the SrTiO3/LaNb-SrTiO3 bulk samples, the lowest thermal conductivity is 2.57 W·m-1·K-1 and the highest zT is 0.35 at 1000 K for the STO/La10Nb20-STO sample.
Keywords:  thermoelectric materials      SrTiO3/LaNb-SrTiO3 composite      hydrothermal method      strontium titanate  
Received:  21 December 2017      Revised:  28 January 2018      Accepted manuscript online: 
PACS:  84.60.Rb (Thermoelectric, electrogasdynamic and other direct energy conversion)  
  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  77.84.Cg (PZT ceramics and other titanates)  
  81.20.-n (Methods of materials synthesis and materials processing)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61751404, 51702168, and 51665042), the Fund from the State Key Laboratory of New Ceramic and Fine Processing (Tsinghua University), China (Grant No. KF201608), the Fund from the Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, China (Grant No. 151004-K), and the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant Nos. 2016BS0507 and 2015MS0509).
Corresponding Authors:  Jun Wang, Jun Wang     E-mail:;

Cite this article: 

Ke-Xian Wang(王柯鲜), Jun Wang(王俊), Yan Li(李艳), Tao Zou(邹涛), Xiao-Huan Wang(王晓欢), Jian-Bo Li(李建波), Zheng Cao(曹正), Wen-Jing Shi(师文静), Xinba Yaer(新巴雅尔) Enhancement of thermoelectric properties of SrTiO3/LaNb-SrTiO3 composite by different doping levels 2018 Chin. Phys. B 27 048401

[1] Tan G, Zhao L D and Kanatzidis M G 2016 Chem. Rev. 116 12123
[2] Luo Y, Yang J, Li G, Liu M, Xiao Y, Fu L, Li W, Zhu P, Peng J, Gao S and Zhang J 2014 Adv. Energy Mater. 4 1300599
[3] Luo Y, Yang J, Jiang Q, Li W, Zhang D, Zhou Z, Cheng Y, Ren Y and He X 2016 Adv. Energy Mater. 6 1600007
[4] Zhao H, Cao B, Li S, Liu N, Shen J, Li S, Jian J, Gu L, Pei Y, Snyder G J, Ren Z and Chen X 2017 Adv. Energy Mater. 7 1700446
[5] Pei Y, Tan G, Feng D, Zheng L, Tan Q, Xie X, Gong S, Chen Y, Li J F, He J, Kanatzidis M G and Zhao L D 2017 Adv. Energy Mater. 7 1601450
[6] Fu L, Yang J, Peng J, Jiang Q, Xiao Y, Luo Y, Zhang D, Zhou Z, Zhang M, Cheng Y and Cheng F 2015 J. Mater. Chem. A 3 1010
[7] Luo Y, Yang J, Liu M, Xiao Y, Fu L, Li W, Zhang D, Zhang M and Cheng Y 2015 J. Mater. Chem. A 3 1251
[8] Zhao L D, Tan G, Hao S, He J, Pei Y, Chi H, Wang H, Gong S, Xu H, Dravid V P, Uher C, Snyder G J, Wolverton C and Kanatzidis M G 2016 Science 351 141
[9] Liu W, Yin K, Zhang Q, Uher C and Tang X 2017 Natl. Sci. Rev. 4 611
[10] Gibbs Z M, Ricci F, Li G, Zhu H, Persson K, Ceder G, Hautier G, Jain A and Snyder G J 2017 NPJ Comp. Mater. 3
[11] Zhao W, Liu Z, Wei P, Zhang Q, Zhu W, Su X, Tang X, Yang J, Liu Y, Shi J, Chao Y, Lin S and Pei Y 2017 Nat. Nanotechnol. 12 55
[12] Zhao W, Liu Z, Sun Z, Zhang Q, Wei P, Mu X, Zhou H, Li C, Ma S, He D, Ji P, Zhu W, Nie X, Su X, Tang X, Shen B, Dong X, Yang J, Liu Y and Shi J 2017 Nature 549 247
[13] Sangwook Lee K H, Fan Yang, Jiawang Hong, Changhyun Ko, Joonki Suh, Kai Liu, Kevin Wang, Jeffrey J Urban, Xiang Zhang, Chris Dames, Sean A Hartnoll, Olivier Delaire and Junqiao Wu 2017 Science 355 371
[14] Nunna R, Qiu P, Yin M, Chen H, Hanus R, Song Q, Zhang T, Chou M Y, Agne M T, He J, Snyder G J, Shi X and Chen L 2017 Energ. Environ. Sci. 10 1928
[15] Cao B, Jian J, Ge B, Li S, Wang H, Liu J and Zhao H 2017 Chin. Phys. B 26 017202
[16] Wang N, Li H, Ba Y, Wang Y, Wan C, Fujinami K and Koumoto K 2010 J. Electron. Mater. 39 1777
[17] Wang N, He H, Ba Y, Wan C and Koumoto K 2010 J. Ceram. Soc. Jpn. 118 1098
[18] Wang Y, Zhang X, Shen L, Bao N, Wan C, Park N H, Koumoto K and Gupta A 2013 Journal of Power Sources 241 255
[19] Zhang L, Tosho T, Okinaka N and Akiyama T 2007 Mater. Trans. 48 1079
[20] Kumar S R, Barasheed A Z and Alshareef H N 2013 ACS Appl. Mater. Interfaces 5 7268
[21] Yu C, Scullin M L, Huijben M, Ramesh R and Majumdar A 2008 Appl. Phys. Lett. 92 191911
[22] Kovalevsky A V, Aguirre M H, Populoh S, Patrício S G, Ferreira N M, Mikhalev S M, Fagg D P, Weidenkaff A and Frade J R 2017 J. Mater. Chem. A 5 3909
[23] Zhang G, Wang W and Li X 2008 Adv. Mater. 20 3654
[24] Dawson J A and Tanaka I 2014 J. Phys. Chem. C 118 25765
[25] Maria Ibáñez R Z, Stéphane Gorsse, Jiandong Fan, Silvia Ortega, Doris Cadavid, Joan Ramon Morante, Jordi Arbio and Andreu Cabot 2013 ASC Nano 7 2573
[26] Park N H, Akamatsu T, Itoh T, Izu N and Shin W 2015 Materials 8 3992
[27] Marcus Scheele N O, Igor Veremchuk, Sven-Ole Peters, Alexander Littig, Andreas Kornowski, Christian Klinke and Horst Weller 2011 ASC Nano 5 8541
[28] Chen X, Wang Y C and Ma Y M 2010 J. Phys. Chem. C 114 9096
[29] Wang J, Zhang B Y, Kang H J, Li Y, Yaer X, Li J F, Tan Q, Zhang S, Fan G H, Liu C Y, Miao L, Nan D, Wang T M and Zhao L D 2017 Nano Energy 35 387
[30] Shannon R D 1976 Acta Crystallogr. A 32 751
[31] Zhang B, Wang J, Zou T, Zhang S, Yaer X, Ding N, Liu C, Miao L, Li Y and Wu Y 2015 J. Mater. Chem. C 3 11406
[32] Shingo Ohta H O and Kunihito Koumoto 2006 J. Ceram. Soc. Jpn. 114 102
[33] Cutler M, Leavy J F and Fitzpatrick R L 1964 Phys. Rev. 133 A1143
[34] Ohta S, Nomura T, Ohta H, Hirano M, Hosono H and Koumoto K 2005 Appl. Phys. Lett. 87 092108
[35] Ou C, Hou J, Wei TR, Jiang B, Jiao S, Li J F and Zhu H 2015 NPG Asia Mater. 7 e182
[36] Shen J, Zhang X, Lin S, Li J, Chen Z, Li W and Pei Y 2016 J. Mater. Chem. A 4 15464
[37] Li W, Lin S, Zhang X, Chen Z, Xu X and Pei Y 2016 Chem. Mater. 28 6227
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[3] Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers
Nan Lu(陆楠) and Jie Guan(管杰). Chin. Phys. B, 2022, 31(4): 047201.
[4] Recent advances in organic, inorganic, and hybrid thermoelectric aerogels
Lirong Liang(梁丽荣), Xiaodong Wang(王晓东), Zhuoxin Liu(刘卓鑫), Guoxing Sun(孙国星), and Guangming Chen(陈光明). Chin. Phys. B, 2022, 31(2): 027903.
[5] Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure
Zheng Cao(曹正), Qing-Qiao Fu(傅晴俏), Hui Gu(顾辉), Zhen Tian(田震), Xinba Yaer(新巴雅尔), Juan-Juan Xing(邢娟娟), Lei Miao(苗蕾), Xiao-Huan Wang(王晓欢), Hui-Min Liu(刘慧敏), and Jun Wang(王俊). Chin. Phys. B, 2021, 30(9): 097204.
[6] Adsorption of CO2 on MgAl layered double hydroxides: Effect of intercalated anion and alkaline etching time
Yan-Yan Feng(冯艳艳), Xiao-Di Niu(牛潇迪), Yong-Hui Xu (徐永辉), and Wen Yang(杨文). Chin. Phys. B, 2021, 30(4): 048101.
[7] LnCu3(OH)6Cl3 (Ln = Gd, Tb, Dy): Heavy lanthanides on spin-1/2 kagome magnets
Ying Fu(付盈), Lianglong Huang(黄良龙), Xuefeng Zhou(周雪峰), Jian Chen(陈见), Xinyuan Zhang(张馨元), Pengyun Chen(陈鹏允), Shanmin Wang(王善民), Cai Liu(刘才), Dapeng Yu(俞大鹏), Hai-Feng Li(李海峰), Le Wang(王乐), and Jia-Wei Mei(梅佳伟). Chin. Phys. B, 2021, 30(10): 100601.
[8] Morphological modifications of C60 crystal rods under hydrothermal conditions
Ming-Run Du(杜明润), Shi-Xin Liu(刘士鑫), Jia-Jun Dong(董家君), Ze-Peng Li(李泽朋), Ming-Chao Wang (王明超), Tong Wei(魏通), Qing-Jun Zhou(周青军), Xiong Yang(杨雄), and Peng-fei Shen(申鹏飞). Chin. Phys. B, 2020, 29(12): 128102.
[9] Josephson effect in the strontium titanate/lanthanum aluminate junction
Xing Yang(阳星), Jie Chen(陈杰), Yabin Yu(余亚斌), Quanhui Liu(刘全慧). Chin. Phys. B, 2019, 28(9): 097401.
[10] Chemical structure of grain-boundary layer in SrTiO3 and its segregation-induced transition: A continuum interface approach
Hui Gu(顾辉). Chin. Phys. B, 2018, 27(6): 060503.
[11] Effect of Nb doping on microstructures and thermoelectric properties of SrTiO3 ceramics
Da-Quan Liu(刘达权), Yu-Wei Zhang(张玉伟), Hui-Jun Kang(康慧君), Jin-Ling Li(李金玲), Xiong Yang(杨雄), Tong-Min Wang(王同敏). Chin. Phys. B, 2018, 27(4): 047205.
[12] Band engineering and precipitation enhance thermoelectric performance of SnTe with Zn-doping
Zhiyu Chen(陈志禹), Ruifeng Wang(王瑞峰), Guoyu Wang(王国玉), Xiaoyuan Zhou(周小元), Zhengshang Wang(王正上), Cong Yin(尹聪), Qing Hu(胡庆), Binqiang Zhou(周斌强), Jun Tang(唐军), Ran Ang(昂然). Chin. Phys. B, 2018, 27(4): 047202.
[13] Nanoscale thermal transport: Theoretical method and application
Yu-Jia Zeng(曾育佳), Yue-Yang Liu(刘岳阳), Wu-Xing Zhou(周五星), Ke-Qiu Chen(陈克求). Chin. Phys. B, 2018, 27(3): 036304.
[14] Low-temperature green synthesis of boron carbide using aloe vera
H V SarithaDevi, M S Swapna, G Ambadas, S Sankararaman. Chin. Phys. B, 2018, 27(10): 107702.
[15] Thermal stability and electrical transport properties of Ge/Sn-codoped single crystalline β-Zn4Sb3 prepared by the Sn-flux method
Hong-xia Liu(刘虹霞), Shu-ping Deng(邓书平), De-cong Li(李德聪), Lan-xian Shen(申兰先), Shu-kang Deng(邓书康). Chin. Phys. B, 2017, 26(2): 027401.
No Suggested Reading articles found!