Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 060503    DOI: 10.1088/1674-1056/27/6/060503
Special Issue: TOPICAL REVIEW — Electron microscopy methods for emergent materials and life sciences
TOPICAL REVIEW—Electron microscopy methods for the emergent materials and life sciences Prev   Next  

Chemical structure of grain-boundary layer in SrTiO3 and its segregation-induced transition: A continuum interface approach

Hui Gu(顾辉)
School of Materials Science & Engineering, Materials Genome Institute, Shanghai University, Shanghai 200444, China
Abstract  

Grain-boundary (GB) structures are commonly imaged as discrete atomic columns, yet the chemical modifications are gradual and extend into the adjacent lattices, notably the space charge, hence the two-dimensional defects may also be treated as continuum changes to extended interfacial structure. This review presents a spatially-resolved analysis by electron energy-loss spectroscopy of the GB chemical structures in a series of SrTiO3 bicrystals and a ceramic, using analytical electron microscopy of the pre-Cs-correction era. It has identified and separated a transient layer at the model Σ5 grain-boundaries (GBs) with characteristic chemical bonding, extending the continuum interfacial approach to redefine the GB chemical structure. This GB layer has evolved under segregation of iron dopant, starting from subtle changes in local bonds until a clear transition into a distinctive GB chemistry with substantially increased titanium concentration confined within the GB layer in 3-unit cells, heavily strained, and with less strontium. Similar segregated GB layer turns into a titania-based amorphous film in SrTiO3 ceramic, hence reaching a more stable chemical structure in equilibrium with the intergranular Ti2O3 glass also. Space charge was not found by acceptor doping in both the strained Σ5 and amorphous GBs in SrTiO3 owing to the native transient nature of the GB layer that facilitates the transitions induced by Fe segregation into novel chemical structures subject to local and global equilibria. These GB transitions may add a new dimension into the structure-property relationship of the electronic materials.

Keywords:  space charge layer      strontium titanate bicrystal      spatially-resolved electron energy-loss spectroscopy      interfacial transition  
Received:  08 April 2018      Revised:  14 May 2018      Accepted manuscript online: 
PACS:  05.70.Np (Interface and surface thermodynamics)  
  68.35.Dv (Composition, segregation; defects and impurities)  
  68.37.Ma (Scanning transmission electron microscopy (STEM))  
  81.70.Jb (Chemical composition analysis, chemical depth and dopant profiling)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No.51532006),the Fund from Shanghai Municipal Science and Technology Commission (Grant No.16DZ2260600),the 111 Project of the Ministry of Education,and the Fund from the National Bureau of Foreign Experts (Project No.D16002).

Corresponding Authors:  Hui Gu     E-mail:  gujiaoshou@shu.edu.cn

Cite this article: 

Hui Gu(顾辉) Chemical structure of grain-boundary layer in SrTiO3 and its segregation-induced transition: A continuum interface approach 2018 Chin. Phys. B 27 060503

[1] Kim M, Duscher G, Browning N D, Sohlberg K, Pantelides S T and Pennycook S J 2001 Phys. Rev. Lett. 86 4056
[2] Zhang Z, Sigle W, Philippe F and Rühle M 2003 Science 302 846
[3] Zhang Z, Sigle W, De Souza R A, Kurtz W, Maier J and Rühle M 2005 Acta Mater. 53 5007
[4] Nakagawa N, Hwang H Y and Muller D A 2006 Nat. Mater. 5 204
[5] Clarke D R 1987 J. Am. Ceram. Soc. 70 15
[6] Ziegle A, Idrobo J C, Cinibulk M K, Kicielowski C, Browning N D and Ritchie R O 2004 Nature 306 1768
[7] Tang M, Carter W C and Cannon R M 2006 Phys. Rev. Lett. 97 075502
[8] Dillon S J, Tang M, Carter W C and Harmer M P 2007 Acta Mater. 55 6208
[9] Gu H, Pan X Q, Cannon R M and Rühle M 1998 J. Am. Ceram. Soc. 81 3125
[10] Gu H 1999 Ultramicrosc. 76 173
[11] Gu H, Nagano T, Zhan G D, Mitomo M and Wakai F 2003 J. Am. Ceram. Soc. 86 1753
[12] Huang R, Gu H, Zhang J X and Jiang D L 2005 Acta Mater. 53 2521
[13] Qian P X, Gu H and Aldinger F 2008 Int. J. Mater. Res. 99 240
[14] Chiang Y M and Takagi T 1990 J. Am. Ceram. Soc. 73 3278
[15] Bäurer M, Shih S J, Bishop C, Harmer M P, Cockayne D and Hoffmann M J 2010 Acta Mater. 58 290
[16] Denk J, Claus J and Maier J 1997 J. Electrochem. Soc. 144 3526
[17] Desu S B and Payne D A 1990 J. Am. Ceram. Soc. 73 3391
[18] Waser R 1995 Solid State Ionics 75 89
[19] Gu H, Cěh M, Stemmer S, Müllejans H and Riihle M 1995 Ultramicrosc. 59 215
[20] Gu H and Cěh M 1999 Ultramicrosc. 78 221
[21] Gu H 1996 Mater. Res. Soc. Symp. Proc. 458 115
[22] Bruley J 1992 Phil. Mag. Lett. 66 47
[23] Tanaka I, Nakajima T, Kawai J, Adachi H, Gu H and Rühle M 1997 Phil. Mag. Lett. 75 21
[24] Xing J J, Gu H, Heo Y U, Takeguchi M 2011 J. Mater. Sci. 46 4361
[25] Li X, Gloter A, Gu H, Luo J, Cao X, Jin P and Colliex C 2014 Scr. Mater. 78-79 41
[26] Bobeth M, Clarke D R, Pompe W 2004 J. Am. Ceram. Soc. 82 1537
[27] Xing J J, Gu H, Gloter A, Shen H, Pan X M and Wang P C 2007 Acta Mater. 55 5323
[28] Chi M F, Gu H 2004 Interf. Sci. 12 335
[29] Gu H, Tanaka I, Cannon R M, Pan X Q and Rühle M 2010 Int. J. Mater. Res. 101 66
[30] Clarke D R, Shaw T M, Philipse A P and Horn R G 1993 J. Am. Ceram. Soc. 76 1201
[31] Wang Z Q, Zhong X Y, Yu R, Chen Z Y and Zhu J 2013 Nat. Commun. 4 1395
[1] Interface modulated electron mobility enhancement in core-shell nanowires
Yan He(贺言), Hua-Kai Xu(许华慨), and Gang Ouyang(欧阳钢). Chin. Phys. B, 2022, 31(11): 110502.
[2] Stable water droplets on composite structures formed by embedded water into fully hydroxylated β-cristobalite silica
Hanqi Gong(龚菡琪), Chonghai Qi(齐崇海), Junwei Yang(杨俊伟), Jige Chen(陈济舸), Xiaoling Lei(雷晓玲), Liang Zhao(赵亮), and Chunlei Wang(王春雷). Chin. Phys. B, 2021, 30(1): 010503.
[3] Surface active agents stabilize nanodroplets and enhance haze formation
Yunqing Ma(马韵箐), Changsheng Chen(陈昌盛), and Xianren Zhang(张现仁). Chin. Phys. B, 2021, 30(1): 010504.
[4] Reduction of interfacial thermal resistance of overlapped graphene by bonding carbon chains
Yuwen Huang(黄钰文), Wentao Feng(冯文韬), Xiaoxiang Yu(余晓翔), Chengcheng Deng(邓程程), and Nuo Yang(杨诺). Chin. Phys. B, 2020, 29(12): 126303.
[5] Hexagonal arrangement of phospholipids in bilayer membranes
Xiao-Wei Chen(陈晓伟), Ming-Xia Yuan(元明霞), Han Guo(郭晗), Zhi Zhu(朱智). Chin. Phys. B, 2020, 29(3): 030505.
[6] Enhancement of water self-diffusion at super-hydrophilic surface with ordered water
Xiao-Meng Yu(于晓萌), Chong-Hai Qi(齐崇海), Chun-Lei Wang(王春雷). Chin. Phys. B, 2018, 27(6): 060101.
[7] The influence of surface effects on Frederiks transition in nematic liquid crystal doped with ferroelectric nanoparticles
Erfan Kadivar, Mojtaba Farrokhbin. Chin. Phys. B, 2018, 27(4): 046801.
[8] Surface-tension-confined droplet microfluidics
Xinlian Chen(陈新莲), Han Wu(伍罕), Jinbo Wu(巫金波). Chin. Phys. B, 2018, 27(2): 029202.
[9] Computational studies on the interactions of nanomaterials with proteins and their impacts
An De-Yi (安德义), Su Ji-Guo (苏计国), Li Chun-Hua (李春华), Li Jing-Yuan (李敬源). Chin. Phys. B, 2015, 24(12): 120504.
[10] A theoretical exploration of the influencing factors for surface potential
Liu Xin-Min (刘新敏), Yang Gang (杨刚), Li Hang (李航), Tian Rui (田锐), Li Rui (李睿), Ding Wu-Quan (丁武泉), Yuan Ruo (袁若). Chin. Phys. B, 2015, 24(6): 068202.
[11] Fault-tolerant topology in the wireless sensor networks for energy depletion and random failure
Liu Bin (刘彬), Dong Ming-Ru (董明如), Yin Rong-Rong (尹荣荣), Yin Wen-Xiao (尹文晓). Chin. Phys. B, 2014, 23(7): 070510.
[12] Virus spreading in wireless sensor networks with a medium access control mechanism
Wang Ya-Qi (王亚奇), Yang Xiao-Yuan (杨晓元). Chin. Phys. B, 2013, 22(4): 040206.
[13] Relation between Tolman length and isothermal compressibility for simple liquids
Wang Xiao-Song (王小松), Zhu Ru-Zeng (朱如曾). Chin. Phys. B, 2013, 22(3): 036801.
[14] A random walk evolution model of wireless sensor networks and virus spreading
Wang Ya-Qi (王亚奇), Yang Xiao-Yuan (杨晓元). Chin. Phys. B, 2013, 22(1): 010509.
No Suggested Reading articles found!