Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 048201    DOI: 10.1088/1674-1056/27/4/048201

Low-temperature synthesis of apatite-type La9.33Ge6O26 as electrolytes with high conductivity

Guang-Chao Yin(尹广超)1, Guo-Dong Zhao(赵国栋)1, Hong Yin(殷红)2, Fu-Chao Jia(贾福超)1, Qiang Jing(景强)1, Sheng-Gui Fu(付圣贵)1, Mei-Ling Sun(孙美玲)1, Wei Gao(高伟)2
1. Laboratory of Functional Molecular Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China;
2. State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China

In the present study, high-quality apatite-type La9.33Ge6O26 powders are successfully synthesized by a facile molten-salt synthesis method (MSSM) at low temperatures, using LiCl, LiCl/NaCl mixture (mass ratio 1:1) as molten salt, respectively. Experimental results indicate that the optimal mass ratio between reactant and molten salt is 1:2, and LiCl/NaCl mixed molten-salt is more beneficial for forming high-quality La9.33Ge6O26 powders than LiCl individual molten-salt. Comparing with the conventional solid-state reaction method (SSRM), the synthesis temperature of apatite-type La9.33Ge6O26 powders using the MSSM decreases more than 350℃, which can effectively avoid Ge loss in the preparation process of precursor powders. Furthermore, the powders obtained by the MSSM are homogeneous, non-agglomerated and well crystallized, which are very favorable for gaining dense pellets in the premise of avoiding Ge loss. On the basis of high-quality precursor powders, the dense and pure ceramic pellets of La9.33Ge6O26 are gained at a low temperature of 1100℃ for 2 h, which exhibit higher conductivities (σ 850℃(LiCl)=2.3×10-2 S·cm-1, σ 850℃(LiCl/NaCl)=4.9×10-2 S·cm-1) and lower activation energies (Ea(LiCl)=1.02 eV, Ea(LiCl/NaCl)=0.99 eV) than that synthesized by the SSRM.

Keywords:  solid oxide fuel cells      electrolyte      ionic conduction  
Received:  28 November 2017      Revised:  08 January 2018      Accepted manuscript online: 
PACS:  82.47.Ed (Solid-oxide fuel cells (SOFC))  
  82.45.Gj (Electrolytes)  
  66.30.Dn (Theory of diffusion and ionic conduction in solids)  

Project supported by the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2016FB16, ZR2015AQ010, and ZR2016AQ08) and the Shandong University of Technology at Zibo and Zibo City Integration Development Project, China (Grant No. 2016ZBXC205).

Corresponding Authors:  Mei-Ling Sun, Wei Gao     E-mail:;

Cite this article: 

Guang-Chao Yin(尹广超), Guo-Dong Zhao(赵国栋), Hong Yin(殷红), Fu-Chao Jia(贾福超), Qiang Jing(景强), Sheng-Gui Fu(付圣贵), Mei-Ling Sun(孙美玲), Wei Gao(高伟) Low-temperature synthesis of apatite-type La9.33Ge6O26 as electrolytes with high conductivity 2018 Chin. Phys. B 27 048201

[1] Matsunaga K, Imaizumi K, Nakamura A and Toyoura K 2017 J. Phys. Chem. C 121 20621
[2] Vitorino N, Oliveira F A C, Marcelo T, Abrantes J C C and Trindade B 2017 Ceram. Int. 43 3847
[3] Dai L, Han W, Li Y H and Wang L 2016 Int. J. Hydrogen Energy 26 11340
[4] Dong X F, Hua G X, Dong D, Zhu W L and Wang H J 2016 J. Power Sources 306 630
[5] Cao X G, Jiang S P and Li Y Y 2015 J. Power Sources 293 806
[6] Imaizumi K, Toyoura K, Nakamura A and Matsunaga K 2014 Solid State Ionics 262 512
[7] Yin G C, Yin H, Wang X, Sun M L, Zhong L H, Cong R D, Zhu H Y, Gao W and Cui Q L 2014 J. Alloys Compd. 611 24
[8] Yin G C, Yin H, Zhu H Y, Wu X X, Zhong L H, Sun M L, Cong R D, Zhang J, Gao W and Cui Q L 2014 J. Alloys Compd. 586 279
[9] Wang S F, Hsu Y F, Lin W J and Kobayashi K 2013 Solid State Ionics 247 48
[10] Yin G C, Yin H, Zhong L H, Sun M L, Zhang J K, Xie X J, Cong R D, Wang X, Gao W and Cui Q L 2014 Chin. Phys. B 23 048202
[11] Santos M, Alves C, Oliveira F A C, Marcelo T, Mascarenhas J, Cavaleiro A and Trindade B 2013 J. Power Sources 231 146
[12] Liu W, Yamaguchi S, Tsuchiya T, Miyoshi S, Kobayashi K and Pan W 2013 J. Power Sources 235 62
[13] Fukuda K, Asaka T, Okino M, Berghout A, Béchade E, Masson O, Julien I and Thomas P 2012 Solid State Ionics 217 40
[14] Orera A, Baikie T, Panchmatia P, White T J, Hanna J, Smith M E, Islam M S, Kendrick E and Slater P R 2011 Fuel Cells 1 10
[15] Yamagata C, Elias D R, Paiva M R S, Misso A M and Mello Castanho S R H 2013 Mater. Res. Bull. 48 2227
[16] Desclaux P, Nurnberger S, Rzepka M and Stimming U 2011 Int. J. Hydrogen Energy 36 10278
[17] Courtin E, Boy P, Piquero T, Vulliet J, Poirot N and Laberty-Robert C 2012 J. Power Sources 206 77
[18] Ishihara T, Matsuda H and Takita Y 1994 J. Am. Chem. Soc. 116 3801
[19] Li B, Liu W and Pan W 2010 J. Power Sources 195 2196
[20] Béchade E, Masson O, Iwata T, Julien I, Fukuda K, Thomas P and Champion E 2009 Chem. Mater. 21 2508
[21] Abram E J, Kirk C A, Sinclair D C and West A R 2005 Solid State Ionics 176 1941
[22] Tolchard J R, Sansom J E H, Sansom P R and Islam M S 2004 J. Solid State Electrochem. 8 668
[23] Kendrick E, Headspith D, Orera A, Apperley D C, Smith R I, Francesconi M G and Slater P R 2009 J. Mater. Chem. 19 749
[24] Sansom J E H, Hildebrandt L and Slater P R 2002 Ionics 8 155
[25] Tian C G, Liu J L, Guo C J, Cai J, Cai T X and Zeng Y W 2008 J. Alloys Compd. 60 646
[26] Rodriguez-Reyna E, Fuentes A F, Maczka M, Hanza J, Boulahya K and Amador U 2006 Solid State Sci. 8 168
[27] Li H, Baikie T, Pramana S S, Shin J F, Keenan P J, Slater P R, Brink F, Hester J and White T J 2014 Inorg. Chem. 53 4803
[28] Yin G C, Yin H, Sun M L, Zhong L H, Zhang J K, Cong R D, Gao W and Cui Q L 2014 RSC Adv. 4 15968
[29] Huang Z X, Li B Y and Liu J 2010 Phys. Status Solidi 207 2247
[30] Li B Y, Liu J, Hu Y X and Huang Z X 2011 J. Alloys Compd. 509 3172
[31] Sansom J E H and Slater P R 2004 Solid State Ionics 167 23
[32] Sansom J E H, Najib A and Slater P R 2004 Solid State Ionics 175 353
[1] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[2] Copper ion beam emission in solid electrolyte Rb4Cu16I6.5Cl13.5
Tushagu Abudouwufu(吐沙姑·阿不都吾甫), Xiangyu Zhang (张翔宇), Wenbin Zuo (左文彬), Jinbao Luo(罗进宝), Yueqiang Lan(兰越强), Canxin Tian (田灿鑫), Changwei Zou(邹长伟), Alexander Tolstoguzov, and Dejun Fu(付德君). Chin. Phys. B, 2022, 31(4): 040704.
[3] Enhancing the thermoelectric performance through the mutual interaction between conjugated polyelectrolytes and single-walled carbon nanotubes
Shuxun Wan(万树勋), Zhongming Chen(陈忠明), Liping Hao(郝丽苹), Shichao Wang(王世超), Benzhang Li(李本章), Xiao Li(黎潇), Chengjun Pan(潘成军), and Lei Wang(王雷). Chin. Phys. B, 2022, 31(2): 028104.
[4] Morphologies of a spherical bimodal polyelectrolyte brush induced by polydispersity and solvent selectivity
Qing-Hai Hao(郝清海) and Jie Cheng(成洁). Chin. Phys. B, 2021, 30(6): 068201.
[5] Silicon micropillar electrodes of lithiumion batteries used for characterizing electrolyte additives
Fangrong Hu(胡放荣), Mingyang Zhang(张铭扬), Wenbin Qi(起文斌), Jieyun Zheng(郑杰允), Yue Sun(孙悦), Jianyu Kang(康剑宇), Hailong Yu(俞海龙), Qiyu Wang(王其钰), Shijuan Chen(陈世娟), Xinhua Sun(孙新华), Baogang Quan(全保刚), Junjie Li(李俊杰), Changzhi Gu(顾长志), and Hong Li(李泓). Chin. Phys. B, 2021, 30(6): 068202.
[6] Adsorption of propylene carbonate on the LiMn2O4 (100) surface investigated by DFT + U calculations
Wei Hu(胡伟), Wenwei Luo(罗文崴), Hewen Wang(王鹤文), and Chuying Ouyang(欧阳楚英). Chin. Phys. B, 2021, 30(3): 038202.
[7] Effect of external electric field on the terahertz transmission characteristics of electrolyte solutions
Jia-Hui Wang(王佳慧), Guo-Yang Wang(王国阳), Xin Liu(刘欣), Si-Yu Shao(邵思雨), Hai-Yun Huang(黄海云), Chen-Xin Ding(丁晨鑫), Bo Su(苏波), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2021, 30(11): 110204.
[8] A synaptic transistor with NdNiO3
Xiang Wang(汪翔), Chen Ge(葛琛), Ge Li(李格), Er-Jia Guo(郭尔佳), Meng He(何萌), Can Wang(王灿), Guo-Zhen Yang(杨国桢), Kui-Juan Jin(金奎娟). Chin. Phys. B, 2020, 29(9): 098101.
[9] Effects of water on the structure and transport properties of room temperature ionic liquids and concentrated electrolyte solutions
Jinbing Zhang(张晋兵), Qiang Wang(王强), Zexian Cao(曹则贤). Chin. Phys. B, 2020, 29(8): 087804.
[10] Suppressing transition metal dissolution and deposition in lithium-ion batteries using oxide solid electrolyte coated polymer separator
Zhao Yan(闫昭), Hongyi Pan(潘弘毅), Junyang Wang(汪君洋), Rusong Chen(陈汝颂), Fei Luo(罗飞), Xiqian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2020, 29(8): 088201.
[11] Influence of fluoroethylene carbonate on the solid electrolyte interphase of silicon anode for Li-ion batteries: A scanning force spectroscopy study
Jieyun Zheng(郑杰允), Jialiang Liu(刘家亮), Suijun Wang(王绥军), Fei Luo(罗飞), Liubin Ben(贲留斌), Hong Li(李泓). Chin. Phys. B, 2020, 29(4): 048203.
[12] Failure analysis with a focus on thermal aspect towards developing safer Na-ion batteries
Yuqi Li(李钰琦), Yaxiang Lu(陆雅翔), Liquan Chen(陈立泉), Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2020, 29(4): 048201.
[13] High-performance synaptic transistors for neuromorphic computing
Hai Zhong(钟海), Qin-Chao Sun(孙勤超), Guo Li(李果), Jian-Yu Du(杜剑宇), He-Yi Huang(黄河意), Er-Jia Guo(郭尔佳), Meng He(何萌), Can Wang(王灿), Guo-Zhen Yang(杨国桢), Chen Ge(葛琛), Kui-Juan Jin(金奎娟). Chin. Phys. B, 2020, 29(4): 040703.
[14] Artificial solid electrolyte interphase based on polyacrylonitrile for homogenous and dendrite-free deposition of lithium metal
Hang-Yu Xu(徐航宇), Quan Li(李泉), Hong-Yi Pan(潘弘毅), Ji-Liang Qiu(邱纪亮), Wen-Zhuo Cao(曹文卓), Xi-Qian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2019, 28(7): 078202.
[15] Structure, conductivity, and ion emission properties of RbAg4I5 solid electrolyte film prepared by pulsed laser deposition
Jun-Lian Chen(陈军联), Wen-Bin Zuo(左文彬), Xian-Wen Ke(柯贤文), Alexander B Tolstoguzov, Can-Xin Tian(田灿鑫), Neena Devi, Ranjana Jha, Gennady N Panin, De-Jun Fu(付德君). Chin. Phys. B, 2019, 28(6): 060705.
No Suggested Reading articles found!