Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 047207    DOI: 10.1088/1674-1056/27/4/047207
Special Issue: SPECIAL TOPIC — Recent advances in thermoelectric materials and devices
SPECIAL TOPIC—Recent advances in thermoelectric materials and devices Prev   Next  

Enhanced thermoelectric performance through homogenously dispersed MnTe nanoparticles in p-type Bi0.52Sb1.48Te3 nanocomposites

Tian-Qi Lu(陆天奇)1,2, Peng-Fei Nan(南鹏飞)2, Si-Long Song(宋思龙)1, Xin-Yue Zhu(朱欣悦)3, Huai-Zhou Zhao(赵怀周)2, Yuan Deng(邓元)1
1. School of Materials Science and Engineering, Beihang University, Beijing 100191, China;
2. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3. Electronic Science and Technology, Beijing University of Posts and Telecommunications, Beijing 102101, China
Abstract  

In this work, we report that the thermoelectric properties of Bi0.52Sb1.48Te3 alloy can be enhanced by being composited with MnTe nano particles (NPs) through a combined ball milling and spark plasma sintering (SPS) process. The addition of MnTe into the host can synergistically reduce the lattice thermal conductivity by increasing the interface phonon scattering between Bi0.52Sb1.48Te3 and MnTe NPs, and enhance the electrical transport properties by optimizing the hole concentration through partial Mn2+ acceptor doping on the Bi3+ sites of the host lattice. It is observed that the lattice thermal conductivity decreases with increasing the percentage of MnTe and milling time in a temperature range from 300 K to 500 K, which is consistent with the increasing of interfaces. Meanwhile, the bipolar effect is constrained to high temperatures, which results in the figure of merit zT peak shifting toward higher temperature and broadening the zT curves. The engineering zT is obtained to be 20% higher than that of the pristine sample for the 2-mol% MnTe-added composite at a temperature gradient of 200 K when the cold end temperature is set to be 300 K. This result indicates that the thermoelectric performance of Bi0.52Sb1.48Te3 can be considerably enhanced by being composited with MnTe NPs.

Keywords:  MnTe nano particles      interface phonon scattering bipolar effect      higher engineering zT  
Received:  18 December 2017      Revised:  25 December 2017      Accepted manuscript online: 
PACS:  72.20.Pa (Thermoelectric and thermomagnetic effects)  
  73.50.Lw (Thermoelectric effects)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. U1601213 and 51472052) and the Funds from Institute of Physics, Chinese Academy of Sciences.

Corresponding Authors:  Huai-Zhou Zhao, Yuan Deng     E-mail:  Hzhao@iphy.ac.cn;dengyuan@buaa.edu.cn

Cite this article: 

Tian-Qi Lu(陆天奇), Peng-Fei Nan(南鹏飞), Si-Long Song(宋思龙), Xin-Yue Zhu(朱欣悦), Huai-Zhou Zhao(赵怀周), Yuan Deng(邓元) Enhanced thermoelectric performance through homogenously dispersed MnTe nanoparticles in p-type Bi0.52Sb1.48Te3 nanocomposites 2018 Chin. Phys. B 27 047207

[1] Liu N, Luo X G and Zhang M L 2014 Chin. Phys. B 23 080502
[2] Bell L E 2008 Science 321 1457
[3] Chen G, Dresselhaus M S, Dresselhaus G, Fleurial J P and Caillat T 2003 Int. Mater. Rev. 48 45
[4] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[5] Shuai J Mao J Song S Zhu Q Sun J, Wang Y, He R, Zhou J, Chen G, Sligh D J and Ren Z 2017 Energy Environ. Sci. 10 799
[6] Zhu T, Liu Y, Fu C, Heremans J P, Snyder J G and Zhao X 2017 Adv. Mater. 29 1605884
[7] Tan G J, Zhao L D and Kanatzidis M G 2016 Chem. Rev. 116 12123
[8] Zhao Q Z and Zhang D L 2017 Chin. Phys. Lett. 34 034207
[9] Delaire O, Ma J, Marty K, May A F, McGuire M A, Du M H, Singh D J, Podlesnyak A, Ehlers G, Lumsden M D and Sales B C 2011 Nat. Mater. 10 614
[10] Kanatzidis M G 2010 Chem. Mater. 22 648
[11] Sootsman J R, Chung D Y and Kanatzidis M G 2009 Angew Chem. Int. Edit. 48 8616
[12] Suekuni K, Avila M A, Umeo K, Fukuoka H, Yamanaka S, Nakagawa T and Takabatake T 2008 Phys. Rev. B 77 235119
[13] Venkatasubramanian R 2000 Phys. Rev. B 61 3091
[14] Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P and Gogna P 2007 Adv. Mater. 19 1043
[15] Venkatasubramanian R, Siivola E, Colpitts T and O'Quinn B 2001 Nature 413 597
[16] Poudel B, Hao Q, Ma Y, Lan Y C, Minnich A, Yu B, Yan X A, Wang D Z, Muto A, Vashaee D, Chen X Y, Liu J M, Dresselhaus M S, Chen G and Ren Z F 2008 Science 320 634
[17] Ma Y, Hao Q, Poudel B, Lan Y C, Yu B, Wang D Z, Chen G and Ren Z F 2008 Nano Lett. 8 2580
[18] Wu Z H, Xie H Q, Wang Y Y, Xing J J and Mao J H 2015 Chin. Phys. Lett. 32 117303
[19] Li Y Y, Li D, Qin X Y, Yang X H, Liu Y F, Zhang J, Dou Y C, Song C J and Xin H X 2015 J. Mater. Chem. C 3 7045
[20] Kim E B, Dharmaiah P, Shin D, Lee K H and Hong S J 2017 J. Alloys Compd. 703 614
[21] Cao B L, Jian J K, Ge B H, Li S M, Wang H, Liu J and Zhao H Z 2017 Chin. Phys. B 26 017202
[22] Jonson M and Mahan G D 1980 Phys. Rev. B 21 4223
[23] May A F, Toberer E S, Saramat A and Snyder G J 2009 Phys. Rev. B 80 125205
[24] Fistul' V I 1969 Heavily doped semiconductors (New York:Plenum Press) p. 418
[25] Tan G, Liu W, Chi H, Su X, Wang S, Yan Y, Tang X, Wong-Ng W and Uher C 2013 Acta Mater. 61 7693
[26] Tan G, Wang S, Yan Y, Li H and Tang X 2012 J. Alloys Compd. 513 328
[27] Wang S Y, She X Y, Zheng G, Fu F, Li H and Tang X F 2012 J. Electron. Mater. 41 1091
[28] Xie H H, Wang H, Pei Y Z, Fu C G, Liu X H, Snyder G J, Zhao X B and Zhu T J 2013 Adv. Funct. Mater. 23 5123
[29] May A F, Flage-Larsen E and Snyder G J 2010 Phys. Rev. B 81 125205
[30] Kim H S, Liu W S, Chen G, Chua C W and Ren Z F 2015 PNAS 112 8205
[31] Altenkirch E 1909 Phys. Z. 10 560
[1] Micro thermoelectric devices: From principles to innovative applications
Qiulin Liu(刘求林), Guodong Li(李国栋), Hangtian Zhu(朱航天), and Huaizhou Zhao(赵怀周). Chin. Phys. B, 2022, 31(4): 047204.
[2] Anisotropic thermoelectric transport properties in polycrystalline SnSe2
Caiyun Li(李彩云), Wenke He(何文科), Dongyang Wang(王东洋), and Li-Dong Zhao(赵立东). Chin. Phys. B, 2021, 30(6): 067101.
[3] Thermal stability and thermoelectric properties of Cd-doped nano-layered Cu2Se prepared using NaCl flux method
Jianhua Lu(陆建华), Decong Li(李德聪), Wenting Liu(刘文婷), Lanxian Shen(申兰先), Jiali Chen(陈家莉), Wen Ge(葛文), and Shukang Deng(邓书康). Chin. Phys. B, 2020, 29(12): 127403.
[4] Temperature-switching logic in MoS2 single transistors
Xiaozhang Chen(陈孝章), Lehua Gu(顾乐华), Lan Liu(刘岚), Huawei Chen(陈华威), Jingyu Li(栗敬俣), Chunsen Liu(刘春森), Peng Zhou(周鹏). Chin. Phys. B, 2020, 29(9): 097201.
[5] Vanadium based XVO3 (X=Na, K, Rb) as promising thermoelectric materials: First-principle DFT calculations
N A Noor, Nosheen Mushahid, Aslam Khan, Nessrin A. Kattan, Asif Mahmood, Shahid M. Ramay. Chin. Phys. B, 2020, 29(9): 097101.
[6] Significant role of nanoscale Bi-rich phase in optimizing thermoelectric performance of Mg3Sb2
Yang Wang(王杨), Xin Zhang(张忻), Yan-Qin Liu(刘燕琴), Jiu-Xing Zhang(张久兴), Ming Yue(岳明). Chin. Phys. B, 2020, 29(6): 067201.
[7] Excellent thermal stability and thermoelectric properties of Pnma-phase SnSe in middle temperature aerobic environment
Yu Tang(唐语), Decong Li(李德聪), Zhong Chen(陈钟), Shuping Deng(邓书平), Luqi Sun(孙璐琪), Wenting Liu(刘文婷), Lanxian Shen(申兰先), Shukang Deng(邓书康). Chin. Phys. B, 2018, 27(11): 118105.
[8] Modulated thermal transport for flexural and in-plane phonons in double-stub graphene nanoribbons
Chang-Ning Pan(潘长宁), Meng-Qiu Long(龙孟秋), Jun He(何军). Chin. Phys. B, 2018, 27(8): 088101.
[9] Complex alloying effect on thermoelectric transport properties of Cu2Ge(Se1-xTex)3
Ruifeng Wang(王瑞峰), Lu Dai(戴璐), Yanci Yan(闫艳慈), Kunling Peng(彭坤岭), Xu Lu(卢旭), Xiaoyuan Zhou(周小元), Guoyu Wang(王国玉). Chin. Phys. B, 2018, 27(6): 067201.
[10] Multinary diamond-like chalcogenides for promising thermoelectric application
Dan Zhang(张旦), Hong-Chang Bai(白洪昌), Zhi-Liang Li(李志亮), Jiang-Long Wang(王江龙), Guang-Sheng Fu(傅广生), Shu-Fang Wang(王淑芳). Chin. Phys. B, 2018, 27(4): 047206.
[11] Se substitution and micro-nano-scale porosity enhancing thermoelectric Cu2Te
Xiaoman Shi(史晓曼), Guoyu Wang(王国玉), Ruifeng Wang(王瑞峰), Xiaoyuan Zhou(周小元), Jingtao Xu(徐静涛), Jun Tang(唐军), Ran Ang(昂然). Chin. Phys. B, 2018, 27(4): 047204.
[12] Effect of Nb doping on microstructures and thermoelectric properties of SrTiO3 ceramics
Da-Quan Liu(刘达权), Yu-Wei Zhang(张玉伟), Hui-Jun Kang(康慧君), Jin-Ling Li(李金玲), Xiong Yang(杨雄), Tong-Min Wang(王同敏). Chin. Phys. B, 2018, 27(4): 047205.
[13] Enhanced thermoelectric properties of p-type polycrystalline SnSe by regulating the anisotropic crystal growth and Sn vacancy
Chengyan Liu(刘呈燕), Lei Miao(苗蕾), Xiaoyang Wang(王潇漾), Shaohai Wu(伍少海), Yanyan Zheng(郑岩岩), Ziyang Deng(邓梓阳), Yulian Chen(陈玉莲), Guiwen Wang(王桂文), Xiaoyuan Zhou(周小元). Chin. Phys. B, 2018, 27(4): 047211.
[14] Enhanced thermoelectric performance in p-type Mg3Sb2 via lithium doping
Hao Wang(王浩), Jin Chen(陈进), Tianqi Lu(陆天奇), Kunjie Zhu(朱坤杰), Shan Li(李珊), Jun Liu(刘军), Huaizhou Zhao(赵怀周). Chin. Phys. B, 2018, 27(4): 047212.
[15] Biaxial strain-induced enhancement in the thermoelectric performance of monolayer WSe2
Wanhuizi Shen(沈婉慧子), Daifeng Zou(邹代峰), Guozheng Nie(聂国政), Ying Xu(许英). Chin. Phys. B, 2017, 26(11): 117202.
No Suggested Reading articles found!