Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 047208    DOI: 10.1088/1674-1056/27/4/047208
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of depositing PCBM on perovskite-based metal-oxide-semiconductor field effect transistors

Su-Zhen Luan(栾苏珍)1, Yu-Cheng Wang(汪钰成)2, Yin-Tao Liu(刘银涛)2, Ren-Xu Jia(贾仁需)2
1. School of Electronic Engineering, Xidian University, Xi'an 710071, China;
2. School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  In this manuscript, the perovskite-based metal-oxide-semiconductor field effect transistors (MOSFETs) with phenyl-C61-butyric acid methylester (PCBM) layers are studied. The MOSFETs are fabricated on perovskites, and characterized by photoluminescence spectra (PL), x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS). With PCBM layers, the current-voltage hysteresis phenomenon is effetely inhibited, and both the transfer and output current values increase. The band energy diagrams are proposed, which indicate that the electrons are transferred into the PCBM layer, resulting in the increase of photocurrent. The electron mobility and hole mobility are extracted from the transfer curves, which are about one order of magnitude as large as those of PCBM deposited, which is the reason why the electrons are transferred into the PCBM layer and the holes are still in the perovskites, and the effects of ionized impurity scattering on carrier transport become smaller.
Keywords:  metal-oxide-semiconductor field effect transistors      photoelectric characteristics      perovskite  
Received:  14 December 2017      Revised:  04 January 2018      Accepted manuscript online: 
PACS:  72.40.+w (Photoconduction and photovoltaic effects)  
  78.55.Kz (Solid organic materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51602241) and the China Postdoctoral Science Foundation (Grant No. 2016M592754).
Corresponding Authors:  Ren-Xu Jia     E-mail:  rxjia@mail.xidian.edu.cn

Cite this article: 

Su-Zhen Luan(栾苏珍), Yu-Cheng Wang(汪钰成), Yin-Tao Liu(刘银涛), Ren-Xu Jia(贾仁需) Effect of depositing PCBM on perovskite-based metal-oxide-semiconductor field effect transistors 2018 Chin. Phys. B 27 047208

[1] Noel N K, Habisreutinger S N, Wenger B, Klug M T, Hörantner M T, Johnston M B, Nicholas R J, Moore D T and Snaith H J 2017 Energy Environ. Sci. 10 145
[2] Ma F, Li J, Li W, Lin N, Wang L and Qiao J 2017 Chem. Sci. 8 800
[3] Liu K, Yao Y, Wang J, Zhu L, Sun M, Ren B, Xie L, Luo Y, Meng Q and Zhan X 2017 Mater. Chem. Front. 1 100
[4] Zhuang S W, Xu J X, Wu B, Zhang Y T, Dong X, Li G X, Zhang B L and Du G T 2017 Chin. Phys. B 26 017802
[5] Erum N and Iqbal M A 2017 Chin. Phys. B 26 047102
[6] Qin T, Huang W, Kim J E, Vak D, Forsyth C, McNeill C R and Cheng Y B 2017 Nano Energy 31 210
[7] Zhu H, Trinh M T, Wang J, Fu Y, Joshi P P, Miyata K, Jin S and Zhu X Y 2017 Adv. Mater. 29 1603072
[8] Yang I S, Sohn M R, Sung S D, Kim Y J, Yoo Y J, Kim J and Lee W I 2017 Nano Energy 32 414
[9] Saliba M, Matsui T, Seo J Y, Domanski K, Correa-Baena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A and Gratzel M 2016 Energy Environ. Sci. 9 1989
[10] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[11] Heo J H, Song D H and Im S H 2014 Adv. Mater. 26 8179
[12] Jung H S and Park N G 2015 Small 11 10
[13] Liu X, Wang C, Lyu L, Wang C, Xiao Z, Bi C, Huang J and Gao Y 2015 Phys. Chem. Chem. Phys. 17 896
[14] Saidaminov M I, Adinolfi V, Comin R, Abdelhady A L, Peng W, Dursun I, Yuan M, Hoogland S, Sargent E H and Bakr O M 2015 Nat. Commun. 6 8724
[15] Chen J, Zhou S, Jin S, Li H and Zhai T 2016 J. Mater. Chem. C 4 11
[16] Ramasamy P, Lim D H, Kim B, Lee S H, Lee M S and Lee J S 2016 Chem. Commun. (Camb) 52 2067
[17] Zhu H, Fu Y, Meng F, Wu X, Gong Z, Ding Q, Gustafsson M V, Trinh M T, Jin S and Zhu X Y 2015 Nat. Mater. 14 636
[18] Liang Y, Yao Y, Zhang X, Hsu W L, Gong Y, Shin J, Wachsman E D, Dagenais M and Takeuchi I 2016 AIP Adv. 6 015001
[19] Liu Y T, Jia R X, Wang Y C, Hu Z Y, Zhang Y M, Pang T Q, Zhu Y J and and Luan S Z 2017 ACS Appl. Mater. Inter. 9 15638
[20] Yang D, Ming W, Shi H, Zhang L and Du M H 2016 Chem. Mater. 28 4349
[21] Chen B, Yang M, Zheng X, Wu C, Li W, Yan Y, Bisquert J, Garcia-Belmonte G, Zhu K and Priya S 2015 J. Phys. Chem. Lett. 6 4693
[22] Eames C, Frost J M, Barnes P R, O'Regan B C, Walsh A and Islam M S 2015 Nat. Commun. 6 7497
[23] Xu J, Buin A, Ip A H, Li W, Voznyy O, Comin R, Yuan M, Jeon S, Ning Z, McDowell J J, Kanjanaboos P, Sun J P, Lan X, Quan L N, Kim D H, Hill I G, Maksymovych P and Sargent E H 2015 Nat. Commun. 6 7081
[24] Liu X, Yu H, Yan L, Dong Q, Wan Q, Zhou Y, Song B and Li Y 2015 ACS Appl. Mater. Inter. 7 6230
[25] Jeng J Y, Chen K C, Chiang T Y, Lin P Y, Tsai T D, Chang Y C, Guo T F, Chen P, Wen T C and Hsu Y J 2014 Adv. Mater. 26 4107
[26] Bai Y, Yu H, Zhu Z, Jiang K, Zhang T, Zhao N, Yang S and Yan H 2015 J. Mater. Chem. A 3 9098
[27] Chin X Y, Cortecchia D, Yin J, Bruno A and Soci C 2015 Nat. Commun. 6 7383
[28] Kuang C, Tang G, Jiu T, Yang H, Liu H, Li B, Luo W, Li X, Zhang W, Lu F, Fang J and Li Y 2015 Nano Lett. 15 2756
[29] Labram J G, Fabini D H, Perry E E, Lehner A J, Wang H, Glaudell A M, Wu G, Evans H, Buck D, Cotta R, Echegoyen L, Wudl F, Seshadri R and Chabinyc M L 2015 J. Phys. Chem. Lett. 6 3565
[30] Adhikari N, Dubey A, Khatiwada D, Mitul A F, Wang Q, Venkatesan S, Iefanova A, Zai J, Qian X, Kumar M and Qiao Q 2015 ACS Appl. Mater. Inter. 7 26445
[31] Kumar G R, Savariraj A D, Karthick S N, Selvam S, Balamuralitharan B, Kim H J, Viswanathan K Vijaykumar K M and Prabakar K 2016 Phys. Chem. Chem. Phys. 18 7284
[32] Liu D, Yang J and Kelly T L 2014 J. Am. Chem. Soc. 136 17116
[33] Trifiletti V, Roiati V, Colella S, Giannuzzi R, Marco L D, Rizzo A, Manca M, Listorti A and Gigli G 2015 ACS Appl. Mater. Inter. 7 4283
[34] Kim S S, Bae S and Jo W H 2015 Chem. Commun. 51 17413
[35] Li F, Ma C, Wang H, Hu W, Yu W, Sheikh A D and Wu T 2015 Nat. Commun. 6 8238
[36] Wang Q, Shao Y, Xie H, Lyu L, Liu X, Gao Y and Huang J 2014 Appl. Phys. Lett. 105 163508
[1] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[2] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[3] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[4] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[5] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[6] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[7] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[8] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[9] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[10] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[11] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[12] Enhancing the photo-luminescence stability of CH3NH3PbI3 film with ionic liquids
Weifeng Ma(马威峰), Chunjie Ding(丁春杰), Nasrullah Wazir, Xianshuang Wang(王宪双), Denan Kong(孔德男), An Li(李安), Bingsuo Zou(邹炳锁), and Ruibin Liu(刘瑞斌). Chin. Phys. B, 2022, 31(3): 037802.
[13] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[14] Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I)
Yaowen Long(龙耀文), Hong Zhang(张红), and Xinlu Cheng(程新路). Chin. Phys. B, 2022, 31(2): 027102.
[15] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
No Suggested Reading articles found!