Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 088101    DOI: 10.1088/1674-1056/27/8/088101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Modulated thermal transport for flexural and in-plane phonons in double-stub graphene nanoribbons

Chang-Ning Pan(潘长宁)1,2, Meng-Qiu Long(龙孟秋)1, Jun He(何军)1
1 Hunan Key Laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China;
2 School of Science, Hunan University of Technology, Zhuzhou 412008, China
Abstract  

Thermal transport properties are investigated for out-of-plane phonon modes (FPMs) and in-plane phonon modes (IPMs) in double-stub graphene nanoribbons (GNRs). The results show that the quantized thermal conductance plateau of FPMs is narrower and more easily broken by the double-stub structure. In the straight GNRs, the thermal conductance of FPMs is higher in the low temperature region due to there being less cut-off frequency and more low-frequency excited modes. In contrast, the thermal conductance of IPMs is higher in the high temperature region because of the wider phonon energy spectrum. Furthermore, the thermal transport of two types of phonon modes can be modulated by the double-stub GNRs, the thermal conductance of FPMs is less than that of IPMs in the low temperatures, but it dominates the contribution to the total thermal conductance in the high temperatures. The modulated thermal conductance can provide a guideline for designing high-performance thermal or thermoelectric nanodevices based on graphene.

Keywords:  graphene nanoribbon      flexural phonons      in-plane phonons      thermoelectric properties  
Received:  06 February 2018      Revised:  16 May 2018      Accepted manuscript online: 
PACS:  81.05.U- (Carbon/carbon-based materials)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  72.20.Pa (Thermoelectric and thermomagnetic effects)  
Fund: 

Project supported by the Science Funds from the Educational Bureau of Hunan Province, China (Grant No. 16C0468), the China Postdoctoral Science Foundation (Grant No. 2016M602421), the Science and Technology Plan of Hunan Province, China (Grant No. 2015RS4002), and the Natural Science Foundation of Hunan Province, China (Grant No. 2015JJ2050).

Corresponding Authors:  Meng-Qiu Long     E-mail:  mqlong@csu.edu.cn

Cite this article: 

Chang-Ning Pan(潘长宁), Meng-Qiu Long(龙孟秋), Jun He(何军) Modulated thermal transport for flexural and in-plane phonons in double-stub graphene nanoribbons 2018 Chin. Phys. B 27 088101

[1] Geim A K 2009 Science 324 5934
[2] Zhang D, Long M Q, Zhang X J, Ouyang J and Xu H 2016 RSC Adv. 6 15008
[3] Cui L L, Long M Q, Zhang X J, Li X M, Zhang D and Yang B C 2016 Phys. Lett. A 380 730
[4] Zhang D, Long M Q, Zhang X J and Xu H 2015 RSC Adv. 5 96455
[5] Yang N, Zhang G and Li B W 2009 Appl. Phys. Lett. 95 033107
[6] Xie Z X, Li K M, Tang L M, Pan C N and Chen K Q 2012 Appl. Phys. Lett. 100 183110
[7] Hu J, Wang Y, Vallabhaneni A, Ruan X L and Chen Y P 2011 Appl. Phys. Lett. 99 113101
[8] Huang H Q, Xu Y, Zou X L, Wu J and Duan W H 2013 Phys. Rev. B 87 205415
[9] Ouyang T, Chen Y P, Xie Y, Stocks G M and Zhong J X 2011 Appl. Phys. Lett. 99 233101
[10] Wang Q, Xie H Q, Jiao H J, Li Z J and Nie Y H 2012 Chin. Phys. B 21 117310
[11] Wu Z H, Xie H Q, Zhai Y B, Gan L H and Liu J 2015 Chin. Phys. B 24 034402
[12] Yu Z, Guo Y, Zheng J and Chi F 2013 Chin. Phys. B 22 117303
[13] Feng S K, Li S M and Fu H Z 2014 Chin. Phys. B 23 117202
[14] Guo H H, Yang T, Tao P and Zhang Z D 2014 Chin. Phys. B 23 017201
[15] Xue L, Xu B and Yi L 2014 Chin. Phys. B 23 037103
[16] Gunst T, Markussen T, Jauho A P and Brandbyge M 2011 Phys. Rev. B 84 155449
[17] Sevincli H and Cuniberti G 2010 Phys. Rev. B 81 113401
[18] Huang W, Wang J S and Liang G 2011 Phys. Rev. B 84 045410
[19] Liang L, Eduardo C S, Eduardo C G and Vincent M 2012 Phys. Rev. B 86 115438
[20] Pan C N, Xie Z X, Tang L M and Chen K Q 2012 Appl. Phys. Lett. 101 103115
[21] Seol J, Jo I, Moore A, Lindsay L, et al. 2010 Science 328 213
[22] Schwab K, Henriksen E A, Worlock J M and Roukes M L 2000 Science 404 974
[23] Yamamoto T and Watanabe K 2004 Phys. Rev. B 70 245402
[24] Xie Z X, Chen K Q and Duan W H 2011 J Phys: Condens. Matter 23 315302
[25] Peng X F, Wang X J, Gong Z Q and Chen K Q 2011 Appl. Phys. Lett. 99 233105
[26] Lindsay L, Broido D A and Mingo N 2010 Phys. Rev. B 82 115427
[27] Lu Y and Guo J 2012 Phys. Rev. B 101 043112
[28] Wang L Z, Xie R G, Bui C T, Liu D, et al. 2011 Nano. Lett. 11 113
[29] Ghosh S, Calizo I, Teweldebrhan D, et al. 2008 Appl. Phys. Lett. 92 151911
[30] Liu Y Y, Zhou W X, Tang L M and Chen K Q 2013 Appl. Phys. Lett. 103 263118
[31] Zhou W X, Chen K Q, Tang L M and Yao L J 2013 Phys. Lett. A 377 3144
[32] Liu Y Y, Li B L, Chen S Z, Jiang X W and Chen K Q 2017 Appl. Phys. Lett. 111 133107
[33] Brenner D W, Shenderova O A, Harrison J A, et al. 2002 J. Phys.: Conden. Matter 1 4
[34] Zimmermann J, Pavone P and Cuniberti G 2008 Phys. Rev. B 78 045410
[35] Tan S H, Tang L M, Xie Z X, Pan C N and Chen K Q 2013 Carbon 65 181
[36] Jiang B, Zhou Y H, Chen C Y and Chen K Q 2015 Org. Electron. 23 133
[37] Chen Q, Tang L M, Chen K Q and Zhao H K 2013 J. Appl. Phys. 114 084301
[38] Sun Q F, Yang P and Guo H 2002 Phys. Rev. Lett. 89 175901
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[3] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[4] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[5] Facile fabrication of highly flexible, porous PEDOT: PSS/SWCNTs films for thermoelectric applications
Fu-Wei Liu(刘福伟), Fei Zhong(钟飞), Shi-Chao Wang(王世超), Wen-He Xie(谢文合), Xue Chen(陈雪), Ya-Ge Hu(胡亚歌), Yu-Ying Ge(葛钰莹), Yuan Gao(郜源), Lei Wang(王雷), and Zi-Qi Liang(梁子骐). Chin. Phys. B, 2022, 31(2): 027303.
[6] N-type core-shell heterostructured Bi2S3@Bi nanorods/polyaniline hybrids for stretchable thermoelectric generator
Lu Yang(杨璐), Chenghao Liu(刘程浩), Yalong Wang(王亚龙), Pengcheng Zhu(朱鹏程), Yao Wang(王瑶), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(2): 028204.
[7] Energy band and charge-carrier engineering in skutterudite thermoelectric materials
Zhiyuan Liu(刘志愿), Ting Yang(杨婷), Yonggui Wang(王永贵), Ailin Xia(夏爱林), and Lianbo Ma(马连波). Chin. Phys. B, 2022, 31(10): 107303.
[8] Super deformability and thermoelectricity of bulk γ-InSe single crystals
Bin Zhang(张斌), Hong Wu(吴宏), Kunling Peng(彭坤岭), Xingchen Shen(沈星辰), Xiangnan Gong(公祥南), Sikang Zheng(郑思康), Xu Lu(卢旭), Guoyu Wang(王国玉), and Xiaoyuan Zhou(周小元). Chin. Phys. B, 2021, 30(7): 078101.
[9] Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111)
Huan Yang(杨欢), Yixuan Gao(高艺璇), Wenhui Niu(牛雯慧), Xiao Chang(常霄), Li Huang(黄立), Junzhi Liu(刘俊治), Yiyong Mai(麦亦勇), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(7): 077306.
[10] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[11] Synthesis and thermoelectric properties of Bi-doped SnSe thin films
Jun Pang(庞军), Xi Zhang(张析), Limeng Shen(申笠蒙), Jiayin Xu(徐家胤), Ya Nie(聂娅), and Gang Xiang(向钢). Chin. Phys. B, 2021, 30(11): 116302.
[12] Low lattice thermal conductivity and high figure of merit in p-type doped K3IO
Weiqiang Wang(王巍强), Zhenhong Dai(戴振宏), Qi Zhong(钟琦), Yinchang Zhao(赵银昌), and Sheng Meng(孟胜). Chin. Phys. B, 2020, 29(12): 126501.
[13] Different noncollinear magnetizations on two edges of zigzag graphene nanoribbons
Yang Xiao(肖杨), Qiaoli Ye(叶巧利), Jintao Liang(梁锦涛), Xiaohong Yan(颜晓红), and Ying Zhang(张影). Chin. Phys. B, 2020, 29(12): 127201.
[14] Physical properties of ternary thallium chalcogenes Tl2MQ3 (M=Zr, Hf; Q=S, Se, Te) via ab-initio calculations
Engin Ateser, Oguzhan Okvuran, Yasemin Oztekin Ciftci, Haci Ozisik, Engin Deligoz. Chin. Phys. B, 2019, 28(10): 106301.
[15] Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons
Caiyun Wang(王彩云), Shuang Lu(鲁爽), Xiaodong Yu(于晓东), Haipeng Li(李海鹏). Chin. Phys. B, 2019, 28(1): 016501.
No Suggested Reading articles found!