Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 097101    DOI: 10.1088/1674-1056/ab99ad
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Vanadium based XVO3 (X=Na, K, Rb) as promising thermoelectric materials: First-principle DFT calculations

N A Noor1, Nosheen Mushahid1, Aslam Khan2, Nessrin A. Kattan3, Asif Mahmood4, Shahid M. Ramay5
1 Department of Physics, University of Lahore, Lahore 54000, Pakistan;
2 Physics Department, KFUEIT, Rahim Yar Khan, Punjab, Pakistan;
3 Department of Physics, Faculty of Science, Taibah University, Medina, Saudi Arabia;
4 College of Engineering, Chemical Engineering Department, King Saud University Riyadh, Riyadh 11451, Saudi Arabia;
5 Department of Physics and Astronomy, College of Science, King Saud University Riyadh, Riyadh 11451, Saudi Arabia
Abstract  We investigate structural, mechanical, thermodynamic, and thermoelectric properties of vanadium-based XVO3 (X=Na, K, Rb) materials using density functional theory (DFT) based calculations. The structural and thermodynamic stabilities are probed by the tolerance factor (0.98, 1.01, and 1.02) with the negative value of enthalpy of formation. Mechanical properties are analyzed in the form of Born stability criteria, ductile/brittle nature (Poisson and Pugh's ratios) and anisotropy factor. To explore the electronic transport properties, we study the electrical conductivity, thermal conductivity, Seebeck coefficient and power factor in terms of chemical potential and temperature. High values of Seebeck coefficient at room temperature may find the potential of the studied perovskites in thermo-electrics devices.
Keywords:  density functional theory      Born stability criteria      Seebeck coefficient      power factor  
Received:  10 January 2020      Revised:  27 May 2020      Accepted manuscript online:  05 June 2020
PACS:  71.15.-m (Methods of electronic structure calculations)  
  72.20.Pa (Thermoelectric and thermomagnetic effects)  
  61.43.Bn (Structural modeling: serial-addition models, computer simulation)  
  31.15.A- (Ab initio calculations)  
Corresponding Authors:  N A Noor, Asif Mahmood     E-mail:  naveedcssp@gmail.com;ahayat@ksu.edu.sa

Cite this article: 

N A Noor, Nosheen Mushahid, Aslam Khan, Nessrin A. Kattan, Asif Mahmood, Shahid M. Ramay Vanadium based XVO3 (X=Na, K, Rb) as promising thermoelectric materials: First-principle DFT calculations 2020 Chin. Phys. B 29 097101

[1] Lines M E and Glass A M 2001 Principles and Applications of Ferroelectrics and Related Materials (Oxford: Oxford University Press)
[2] Schindler M, Hawthorne F C and Baur W H 2000 Chem. Mater. 12 1248
[3] Singh D J 2006 Phys. Rev. B 73 094102
[4] Selbin J 1965 Chem. Rev. 65 153
[5] Hawthorne F and Calvo C 1977 J. Solid State Chem. 22 157
[6] Erum N and Iqbal M A 2017 Chin. Phys. B 26 047102
[7] Shpanchenko R V, Chernaya V V, Tsirlin A A, Chizhov P S, Sklovsky D E, Antipov E V, Khlybov E P, Pomjakushin V, Balagurov A M, Medvedeva J E, Kaul E E and Geibel C 2004 Chem. Mater. 16 3267
[8] Belik A A, Azuma M, Saito T, Shimakawa Y and Takano M 2005 Chem. Mater. 17 269
[9] Hui S 2001 Solid State Ionics 143 275
[10] Li Y, Lu Y, Zhao C, Hu Y S, Titirici M M, Li H, Huang X and Chen L 2017 Energy Storage Mater. 7 130
[11] Larcher D and Tarascon J M 2015 Nat. Chem. 7 19
[12] Ponomarev B K, Red'kin B S and Sinitsyn V V 2012 Inorg. Mater.: Appl. Res. 3 338
[13] Nakajima T, Isobe M, Tsuchiya T, Ueda Y and Kumagai T 2008 Nat. Mater. 7 735
[14] Nakajima T, Isobe M, Tsuchiya T, Ueda Y and Kumagai T 2009 J. Lumin. 129 1598
[15] Belik A A and Takayama-Muromachi E 2006 J. Solid State Chem. 179 1650
[16] Patwe S J and Rao U R K 1995 J. Mater. Sci. Lett. 14 1702
[17] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2K, An Augmented Plane Wave+local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universiẗat Wien Austria)
[18] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett. 100 136406
[19] Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401
[20] Koller D, Tran F and Blaha P 2011 Phys. Rev. B 83 195134
[21] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[22] Saeed Y, Kachmar A and Carignano M A 2017 J. Phys. Chem. C 121 1399
[23] Saeed Y, Singh N and Schwingenschlögl U 2012 Adv. Functn. Mater. 22 2792
[24] Saeed Y, Singh N and Schwingenschlögl U 2014 Appl. Phys. Lett. 104 033105
[25] Saeed Y, Singh N and Schwingenschlögl U 2014 Appl. Phys Lett. 105 031915
[26] Singh N, Saeed Y and Schwingenschlögl U 2014 Phys. Status Solidi RRL 8 849
[27] Madsen G K and Singh D J 2006 Comput. Phys. Commun. 175 67
[28] Folland G B 1995 Introduction to Partial Differential Equations (Princeton: Princeton University Press)
[29] Kokalj A 1999 J. Mol. Graph. Modell. 17 176
[30] Stoumpos C C, Cao D H, Clark D J et al. 2016 Chem. Mater. 28 2852
[31] Topor L, Navrotsky A, Zhao Y and Weidner D J 1997 J. Solid State Chem. 132 131
[32] Ji X, Yu Y, Ji J, Long J, Chen J and Liu D 2015 J. Alloy Compd. 623 304
[33] Mahmood Q, Javed A, Murtaza G and Alay-E-Abbas S 2015 Mater. Chem. Phys. 162 831
[34] Sajjad M, Alay-E-Abbas S, Zhang H, Noor N, Saeed Y, Shakir I and Shaukat A 2015 J. Magn. Magn. Mater. 390 78
[35] Behram R B, Iqbal M, Alay-E-Abbas S, Sajjad M, Yaseen M, Arshad M I and Murtaza G 2016 Mater. Sci. Semicond. Process. 41 297
[36] Nazir S, Mahmood I, Noor N, Laref A and Sajjad M 2019 High Energy Density Phys. 33 100715
[37] Roknuzzaman M, Ostrikov K, Wang H, Du A and Tesfamichael T 2017 Sci. Rep. 7 1
[38] Ciftci Y, Çolakoglu K, Deligoz E and Ozisik H 2008 Mater. Chem. Phys. 108 120
[39] Hao Y J, Chen X R, Cui H L and Bai Y L 2006 Physica B 382 118
[40] Noor N, Mahmood Q, Rashid M, Haq B U and Laref A 2018 Ceram. Int. 44 13750
[41] Sajjad M, Singh N, Sattar S, Wolf S D and Schwingenschlögl U 2019 ACS Appl. Energy Mater. 2 3004
[42] Hassan M, Shahid A and Mahmood Q 2018 Solid State Commun. 270 92
[43] Sabir B, Murtaza G, Mahmood Q, Ahmad R and Bhamu K 2017 Curr. Appl. Phys. 17 1539
[44] Majid F, Nasir M T, Algrafy E, Sajjad M, Noor N, Mahmood A and Ramay S M 2020 J. Mater. Res. Techn. 9 6135
[45] Noor N A, Mahmood Q, Hassan M, Laref A, Rashid M 2018 J. Mol. Graph. Modell. 84 152
[46] Yasukawa M, Ueda K, Fujitsu S and Hosono H 2017 Ceram. Int. 43 9653
[47] Angsten T, Martin L W and Asta M 2018 Chem. Mater. 30 587
[48] Saal J E, Kirklin S, Aykol M, Meredig B and Wolverton C 2013 JOM 65 1501
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[10] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[11] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[12] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[15] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
No Suggested Reading articles found!