Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 067201    DOI: 10.1088/1674-1056/27/6/067201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Complex alloying effect on thermoelectric transport properties of Cu2Ge(Se1-xTex)3

Ruifeng Wang(王瑞峰)1,3, Lu Dai(戴璐)1,3, Yanci Yan(闫艳慈)1,2, Kunling Peng(彭坤岭)1,2, Xu Lu(卢旭)2, Xiaoyuan Zhou(周小元)2, Guoyu Wang(王国玉)1,3
1 Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China;
2 College of Physics, Chongqing University, Chongqing 401331, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

To enhance the thermoelectric performance of Cu2GeSe3, a series of Te-alloyed samples Cu2Ge(Se1-xTex)3 are synthesized and investigated in this work. It is found that the lattice thermal conductivity is reduced drastically for x=0.1 sample, which may be attributed to the point defects introduced by alloying. However, for samples with x ≥ 0.2, the lattice thermal conductivity increases with increasing x, which is related to a less distorted structure. The structure evolution, together with the change in carrier concentration, also leads to a systemically change in electrical properties. Finally, a zT of 0.55@750 K is obtained for the sample with x=0.3, about 62% higher than that for the pristine sample.

Keywords:  thermoelectric      Cu2GeSe3      alloying      distorted structure  
Received:  05 March 2018      Revised:  03 April 2018      Accepted manuscript online: 
PACS:  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  61.66.Dk (Alloys )  
  72.20.Pa (Thermoelectric and thermomagnetic effects)  
  66.70.Df (Metals, alloys, and semiconductors)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos.51672270,11674040,and 11404044),the Key Research Program of Frontier Sciences,Chinese Academy of Sciences (Grant No.QYZDB-SSW-SLH016),and the Project for Fundamental and Frontier Research in Chongqing City (Grant No.CSTC2015JCYJBX0026).

Corresponding Authors:  Guoyu Wang     E-mail:  guoyuw@cigit.ac.cn

Cite this article: 

Ruifeng Wang(王瑞峰), Lu Dai(戴璐), Yanci Yan(闫艳慈), Kunling Peng(彭坤岭), Xu Lu(卢旭), Xiaoyuan Zhou(周小元), Guoyu Wang(王国玉) Complex alloying effect on thermoelectric transport properties of Cu2Ge(Se1-xTex)3 2018 Chin. Phys. B 27 067201

[1] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[2] Bell L E 2008 Science 321 1457
[3] Kraemer D, Jie Q, McEnaney K, Cao F, Liu W, Weinstein L A, Loomis J, Ren Z and Chen G 2016 Nat. Energy 1 16153
[4] Yang J and Caillat T 2006 MRS Bull. 31 224
[5] Pei Y, Shi X, LaLonde A, Wang H, Chen L and Snyder G J 2011 Nature 473 66
[6] Zhao L D, Tan G, Hao S, He J, Pei Y, Chi H, Wang H, Gong S, Xu H, Dravid V P, Uher C, Snyder G J, Wolverton C and Kanatzidis M G 2016 Science 351 141
[7] Skoug E J, Cain J D and Morelli D T 2010 J. Alloys Compd. 506 18
[8] Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K and Kanatzidis M G 2004 Science 303 818
[9] Biswas K, He J, Zhang Q, Wang G, Uher C, Dravid V P and Kanatzidis M G 2011 Nat. Chem. 3 160
[10] Heremans J P, Dresselhaus M S, Bell L E and Morelli D T 2013 Nat. Nanotechnol. 8 471
[11] Nolas G S, Slack G A, Chand J L and Schujman B 1998 IEEE. 294
[12] Nolas G S 1998 Mrs Proc. 545 435
[13] Sales B C, Mandrus D and Williams R K 1996 Science 272 1325
[14] Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T and Snyder G J 2012 Nat. Mater. 11 422
[15] Chen Q, Wang G, Zhang A, Yang D, Yao W, Peng K, Yan Y, Sun X, Liu A, Wang G and Zhou X 2015 J. Mater. Chem. C 3 12273
[16] Luo P, You L, Yang J, Xing J, Zhang J, Wang C, Zhao X, Luo J and Zhang W 2017 Chin. Phys. B 26 097201
[17] Xue L, Xu B and Lin Y 2014 Chin. Phys. B 23 037103
[18] Liu R, Xi L, Liu H, Shi X, Zhang W and Chen L 2012 Chem. Commun. 48 3818
[19] Plirdpring T, Kurosaki K, Kosuga A, Day T, Firdosy S, Ravi V, Snyder G J, Harnwunggmoung A, Sugahara T, Ohishi Y, Muta H and Yamanaka S 2012 Adv. Mater. 24 3622
[20] Liu M L, Chen I W, Huang F Q and Chen L D 2009 Adv. Mater. 21 3808
[21] Shi X, Xi L, Fan J, Zhang W and Chen L 2010 Chem. Mater. 22 6029
[22] Shao H, Zhang H, Peng B, Tan X, Liu G Q, Jiang J and Jiang H 2016 Europhys. Lett. 115 26002
[23] Shao H, Tan X, Hu T, Liu G Q, Jiang J and Jiang H 2015 Europhys. Lett. 109 47004
[24] Marcano G and Nieves L 2000 J. Appl. Phys. 87 1284
[25] Cho J Y, Shi X, Salvador J R, Meisner G P, Yang J, Wang H, Wereszczak A A, Zhou X and Uher C 2011 Phys. Rev. B 84 085207
[26] Zhao D, Ning J, Li S and Zuo M 2016 J. Nanomater. 2016 5923975
[27] Huang T, Yan Y, Peng K, Tang X, Guo L, Wang R, Lu X, Zhou X and Wang G 2017 J. Alloys Compd. 723 708
[28] Cho J Y, Shi X, Salvador J R, Yang J and Wang H 2010 J. Appl. Phys. 108 073713
[29] Chetty R, Prem Kumar D S, Falmbigl M, Rogl P, You S W, Kim I H and Mallik R C 2014 Intermetallics 54 1
[30] Li Y, Liu G, Cao T, Liu L, Li J, Chen K, Li L, Han Y and Zhou M 2016 Adv. Funct. Mater. 26 6025
[31] Ong K P, Singh D J and Wu P 2011 Phys. Rev. B 83 115110
[32] Wu W, Wu K, Ma Z and Sa R 2012 Chem. Phys. Lett. 537 62
[33] Fan J, Liu H, Shi X, Bai S, Shi X and Chen L 2013 Acta Mater. 61 4297
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[3] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[4] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[5] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[6] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[7] Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Chin. Phys. B, 2022, 31(7): 076301.
[8] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[9] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[10] Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers
Nan Lu(陆楠) and Jie Guan(管杰). Chin. Phys. B, 2022, 31(4): 047201.
[11] Micro thermoelectric devices: From principles to innovative applications
Qiulin Liu(刘求林), Guodong Li(李国栋), Hangtian Zhu(朱航天), and Huaizhou Zhao(赵怀周). Chin. Phys. B, 2022, 31(4): 047204.
[12] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[13] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[14] Module-level design and characterization of thermoelectric power generator
Kang Zhu(朱康), Shengqiang Bai(柏胜强), Hee Seok Kim, and Weishu Liu(刘玮书). Chin. Phys. B, 2022, 31(4): 048502.
[15] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
No Suggested Reading articles found!