Abstract It is reported that SnSe2 consisting of the same elements as SnSe, is a new promising thermoelectric material with advantageous layered structure. In this work, the thermoelectric performance of polycrystalline SnSe2 is improved through introducing SnSe phase and electron doping (Cl doped in Se sites). The anisotropic transport properties of SnSe2 are investigated. A great reduction of the thermal conductivity is achieved in SnSe2 through introducing SnSe phase, which mainly results from the strong SnSe2-SnSe inter-phase scattering. Then the carrier concentration is optimized via Cl doping, leading to a great enhancement of the electrical transport properties, thus an extraordinary power factor of ~5.12 μW·cm-1·K-2 is achieved along the direction parallel to the spark plasma sintering (SPS) pressure direction (||P). Through the comprehensive consideration on the anisotropic thermoelectric transport properties, an enhanced figure of merit ZT is attained and reaches to ~0.6 at 773 K in SnSe2-2% SnSe after 5% Cl doping along the||P direction, which is much higher than ~0.13 and ~0.09 obtained in SnSe2-2% SnSe and pristine SnSe2 samples, respectively.
Fund: Project supported by the Beijing Natural Science Foundation, China (Grant No. JQ18004), the National Key Research and Development Program of China (Grant Nos. 2018YFA0702100 and 2018YFB0703600), the National Natural Science Foundation of China (Grant No. 51772012), Shenzhen Peacock Plan Team (Grant No. KQTD2016022619565991), and 111 Project (Grant No. B17002). This work was also supported by the National Postdoctoral Program for Innovative Talents, China (Grant No. BX20200028) and the high performance computing (HPC) resources at Beihang University. L.D.Z. thanks for the support from the National Science Fund for Distinguished Young Scholars (Grant No. 51925101).
Caiyun Li(李彩云), Wenke He(何文科), Dongyang Wang(王东洋), and Li-Dong Zhao(赵立东) Anisotropic thermoelectric transport properties in polycrystalline SnSe2 2021 Chin. Phys. B 30 067101
[1] Zhao L D, Dravid V P and Kanatzidis M G 2014 Energy Environ. Sci.7 251 [2] Zhang X and Zhao L D 2015 Journal of Materiomics1 92 [3] Tan G, Zhao L D and Kanatzidis M G 2016 Chem. Rev.116 12123 [4] Wang Y N, Chen S P, Fan W H, Guo J Y, Wu Y C and Wang W X 2020 Acta Phys. Sin.69 246801 (in Chinese) [5] Zheng L X, Hu J F and Luo J 2020 Acta Phys. Sin.69 247102 (in Chinese) [6] Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C and Kanatzidis M G 2004 Science303 818 [7] Sfeir M Y, Beetz T, Wang F, et al. 2008 Science312 554 [8] Pei Y, Shi X, Lalonde A, Wang H, Chen L and Snyder G J 2011 Nature473 66 [9] Pei Y, Wang H and Snyder G J 2012 Adv Mater24 6125 [10] Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N and Kanatzidis M G 2012 Nature489 414 [11] Li W, Zheng L, Ge B, Lin S, Zhang X, Chen Z and Pei Y 2017 Adv. Mater.29 17 [12] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C and Kanatzidis M G 2014 Nature508 373 [13] Zhao L D, Tan G, Hao S Q, He J Q, Pei Y L, Chi H, Wang H, Gong S K, Xu H B, Dravid V P, Uher C, Snyder G J, Wolverton C andKanatzidis M G 2015 Science351 141 [14] Chang C, Wu M, He D, et al. 2018 Science360 778 [15] Wu D, Pei Y, Wang Z, Wu H, Huang L, Zhao L D and He J 2014 Advanced Functional Materials48 7763 [16] Xiao Y and Zhao L D 2018 npj Quantum Materials3 1 [17] Xiao Y, Wang D, Zhang Y, Chen C, Zhang S, Wang K and Zhao L D 2020 J. Am. Chem. Soc.142 4051 [18] Liu C, Huang Z, Wang D, Wang X, Miao L, Wang X and Zhao L D 2019 Journal of Materials Chemistry A7 9761 [19] Huang Y, Zhou D, Chen X, Liu H, Wang C and Wang S 2016 Chemphyschem17 375 [20] Fu Li Z Z, Li Y W, Wang W T, Li J F, Li B, Zhoang A H, Luo J T and Fan P 2017 Journal of Materials Science52 10506 [21] Li J, Jia F, Zhang S, Zheng S, Wang B, Chen L and Wu L 2019 Journal of Materials Chemistry A7 19316 [22] Chen Z, Ge B, Li W, Lin S, Shen J, Chang Y and Pei Y 2017 Nat. Commun.8 13828 [23] Qu W W, Zhang X X, Yuan B F and Zhao L D 2017 Rare Metals37 79 [24] Qin B, Wang D, He W, Zhang Y, Wu H, Pennycook S J and Zhao L D 2019 J. Am. Chem. Soc.141 1141 [25] Chang C and Zhao L D 2018 Materials Today Physics4 50 [26] Wang D, Huang Z, Zhang Y, Hao L, Wang G, Deng S and Zhao L D 2020 Science China Materials63 1759 [27] Pei Y, Chang C, Wang Z, Yin M, Wu M, Tan G and Zhao L D 2016 J. Am. Chem. Soc.138 16364 [28] Yu P, Yu X, Lu W, Lin H, Sun L, Du K and Liu Z 2016 Advanced Functional Materials26 137 [29] Sun B Z, Ma Z, He C and Wu K 2015 Phys. Chem. Chem. Phys.17 29844 [30] Ding Y, Xiao B, Tang G and Hong J 2016 The Journal of Physical Chemistry C121 225 [31] Saha S, Banik A and Biswas K 2016 Phys. Chem. Chem. Phys.17 15634 [32] Zhou Y and Zhao L D 2017 Adv. Mater.29 1702676 [33] Wu Y, Li W, Faghaninia A, Chen Z, Li J, Zhang X and Pei Y 2017 Materials Today Physics3 127 [34] Zhou W X and Chen K Q 2015 Sci. Rep.5 15070 [35] Luo Y, Zheng Y, Luo Z, Hao S, Du C, Liang Q and Kanatzidis M G 2018 Advanced Energy Materials8 1702167 [36] Shu Y, Su X, Xie H, Zheng G, Liu W, Yan Y and Tang X 2018 ACS Appl. Mater. Interfaces10 15793 [37] Wu S, Liu C, Wu Z, Miao L, Gao J, Hu X and Zhou X 2019 Ceramics International45 82 [38] Qin B, Zhang Y, Wang D, Zhao Q, Gu B, Wu H and Zhao L D 2020 J. Am. Chem. Soc.142 5901 [39] Zhang X, Wang D, Wu H, Yin M, Pei Y, Gong S and Zhao L D 2017 Energy & Environmental Science10 2420 [40] Zhao L D, He J, Wu C I, Hogan T P, Zhou X, Uher C, Kanatzidis M G 2012 J. Am. Chem. Soc.134 7902 [41] Qin B C X, Zhou Y, Ming Y and Dong Z L 2018 Rare Metals37 343 [42] Pei Y, Gibbs Z M, Gloskovskii A, Balke B, Zeier W G and Snyder G J 2014 Adv. Energy. Mater.4 1400486 [43] He W K, Qin B C and Zhao L D 2020 Chin. Phys. Lett.37 087104 [44] Cutler M, Leavy J F and Fitzpatrick R L 1964 Phys. Rev.133 A1143 [45] Toberer G S E 2008 Nat. Mater.7 105 [46] Xiao Y, Chang C, Pei Y, Wu D, Peng K, Zhou X and Zhao L D 2016 Phys. Rev. B94 125203 [47] Xiao Y, Wu H, Cui J, Wang D, Fu L, Zhang Y and Zhao L D 2018 Energy Environ. Sci.11 2486 [48] Schrade M, Berland K, Eliassen S N H, Guzik M N, Echevarria-Bonet C, Sorby M H and Finstad T G 2017 Sci. Rep.7 13760
A self-powered and sensitive terahertz photodetection based on PdSe2 Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.