Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 028101    DOI: 10.1088/1674-1056/27/2/028101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Suppression of electron and hole overflow in GaN-based near-ultraviolet laser diodes

Yao Xing(邢瑶)1,2, De-Gang Zhao(赵德刚)1,3, De-Sheng Jiang(江德生)1, Xiang Li(李翔)1, Zong-Shun Liu(刘宗顺)1, Jian-Jun Zhu(朱建军)1, Ping Chen(陈平)1, Jing Yang(杨静)1, Wei Liu(刘炜)1, Feng Liang(梁锋)1, Shuang-Tao Liu(刘双韬)1, Li-Qun Zhang(张立群)4, Wen-Jie Wang(王文杰)5, Mo Li(李沫)5, Yuan-Tao Zhang(张源涛)6, Guo-Tong Du(杜国同)6
1. State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Science, Beijing 100083, China;
2. College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
3. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
4. Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China;
5. Microsystem & Terahertz Research Center, Chinese Academy of Engineering Physics, Chengdu 610200, China;
6. State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130023, China
Abstract  In order to suppress the electron leakage to p-type region of near-ultraviolet GaN/InxGa1-xN/GaN multiple-quantum-well (MQW) laser diode (LD), the Al composition of inserted p-type AlxGa1-xN electron blocking layer (EBL) is optimized in an effective way, but which could only partially enhance the performance of LD. Here, due to the relatively shallow GaN/In0.04Ga0.96N/GaN quantum well, the hole leakage to n-type region is considered in the ultraviolet LD. To reduce the hole leakage, a 10-nm n-type AlxGa1-xN hole blocking layer (HBL) is inserted between n-type waveguide and the first quantum barrier, and the effect of Al composition of AlxGa1-xN HBL on LD performance is studied. Numerical simulations by the LASTIP reveal that when an appropriate Al composition of AlxGa1-xN HBL is chosen, both electron leakage and hole leakage can be reduced dramatically, leading to a lower threshold current and higher output power of LD.
Keywords:  GaN-based ultraviolet LD      electron and hole leakage  
Received:  16 August 2017      Revised:  23 October 2017      Accepted manuscript online: 
PACS:  81.05.Ea (III-V semiconductors)  
  81.07.St (Quantum wells)  
  02.60.Cb (Numerical simulation; solution of equations)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the Science Challenge Project, China (Grant No. Z2016003), the National Key R & D Program of China (Grant Nos. 2016YFB0400803 and 2016YFB0401801), the National Natural Science Foundation of China (Grant Nos. 61674138, 61674139, 61604145, 61574135, 61574134, 61474142, 61474110, 61377020, and 61376089), and the Beijing Municipal Science and Technology Project, China (Grant No. Z161100002116037).
Corresponding Authors:  De-Gang Zhao     E-mail:  dgzhao@red.semi.ac.cn
About author:  81.05.Ea; 81.07.St; 02.60.Cb; 42.50.-p

Cite this article: 

Yao Xing(邢瑶), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Xiang Li(李翔), Zong-Shun Liu(刘宗顺), Jian-Jun Zhu(朱建军), Ping Chen(陈平), Jing Yang(杨静), Wei Liu(刘炜), Feng Liang(梁锋), Shuang-Tao Liu(刘双韬), Li-Qun Zhang(张立群), Wen-Jie Wang(王文杰), Mo Li(李沫), Yuan-Tao Zhang(张源涛), Guo-Tong Du(杜国同) Suppression of electron and hole overflow in GaN-based near-ultraviolet laser diodes 2018 Chin. Phys. B 27 028101

[1] Hardy M T, Feezell D F, DenbaarsS P and Nakamura S 2011 Mater. Today 14 408
[2] Li J M, Liu, Liu Z Q, Yan J C, Wei T B, Yi X Y and Wang J X 2016 J. Semicond. 37 061001
[3] Sun Q, Yan W, Feng M Z, Li Z C, Feng B, Zhao H M and Yang H 2016 J. Semicond. 37 044006
[4] Shizuo F 2015 Jpn. J. Appl. Phys. 54 030101
[5] Nakamura S 1999 Semicond. Sci. Technol. 14 R27
[6] Jiang L R, Liu J P, Tian A Q, Cheng Y, Li Z C, Zhang L Q, Zhang S M, Li D Y, Ikeda M and Yang H J 2016 J. Semicond. 37 111001
[7] Kneissl M, Kolbe T, Schlegel J and Stellmach J 2011 Lasers & Electro-optics 47 10
[8] Kuo Y K and Chang Y A C 2004 IEEE J. Quantum Electron. 40 437
[9] Yang W, Li D, Liu N Y, Chen Z, Wang L, Liu L, Li L, Wan C H, Chen W H, Hu X D and Du W M 2012 Appl. Phys. Lett. 100 031105
[10] Zhang Y, Kao T T, Liu J P, Lochner, Z, Kim S S, Ryou J H, Dupuis R D and Shen S C 2011 J. Appl. Phys. 109 083115
[11] Lei Y, Liu Z Q, He M, Yi X Y, Wang J X, Li J M, Zheng S W, Li S T 2015 J. Semicond. 36 054006
[12] Liu N, Yi X Y, Liang M, Guo E Q, Feng X X, Si Z, Ji X L, Wei X C, Lu H X, Liu Z Q, Zhang N, Wang J X and Li J M 2014 J. Semicond. 35 024010
[13] Lee S N, Cho S Y, Ryu H Y, Son J K, Paek H S, Sakong T, Jang T, Choi K K, Ha K H, Yang M H, Nam O H and Park Y 2006 Appl. Phys. Lett. 88 111101
[14] Chen J R, Lee C H, Ko T S, Chang Y A, Lu T C, Kuo H C and Wang S C 2008 J. Lightwave Technol. 26 329
[15] Zhao D G, Yang J, Liu Z S, Chen P, Zhu J J, Jiang D S, Shi Y S, Wang H, Duan L H, Zhang L Q and Yang H 2017 J. Semicond. 38 051001
[16] Cheng Y, Liu J P, Tian A Q, Zhang F, Feng M X, Hu W W, Zhang S M, Ikeda M, Li D Y, Zhang L Q and Yang H 2016 Appl. Phys. Lett. 109 092104
[17] Nakwaski W and Sarzal R P 2016 J. Semicond. 37 024001
[18] Laws G M, Larkins E C, Harrison I, Molloy C and Someford D 2001 J. Appl. Phys. 89 1108
[19] Chen J R, Ko T S, Su P Y, Lu T C, Kuo H C, Kuo Y K and Wang S C 2008 J. Lightwave Technol. 26 3155
[20] Le L C, Zhao D G, Jiang D S, Chen P, Liu Z S, Yang J, He X G, Li X J, Liu J P, Zhu J J, Zhang S M and Yang H 2014 Opt. Express 22 11392
[1] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[2] Review of a direct epitaxial approach to achieving micro-LEDs
Yuefei Cai(蔡月飞), Jie Bai(白洁), and Tao Wang(王涛). Chin. Phys. B, 2023, 32(1): 018508.
[3] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[4] Degradation mechanisms for polycrystalline silicon thin-film transistors with a grain boundary in the channel under negative gate bias stress
Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Huaisheng Wang(王槐生). Chin. Phys. B, 2022, 31(12): 128105.
[5] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[6] Degradation mechanisms for a-InGaZnO thin-film transistors functioning under simultaneous DC gate and drain biases
Tianyuan Song(宋天源), Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Qi Shan(单奇). Chin. Phys. B, 2022, 31(8): 088101.
[7] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
[8] Butt-joint regrowth method by MOCVD for integration of evanescent wave coupled photodetector and multi-quantum well semiconductor optical amplifier
Feng Xiao(肖峰), Qin Han(韩勤), Han Ye(叶焓), Shuai Wang(王帅), Zi-Qing Lu(陆子晴), and Fan Xiao(肖帆). Chin. Phys. B, 2022, 31(4): 048101.
[9] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[10] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[11] Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties
Zhen-Hua Li(李振华), Peng-Fei Shao(邵鹏飞), Gen-Jun Shi(施根俊), Yao-Zheng Wu(吴耀政), Zheng-Peng Wang(汪正鹏), Si-Qi Li(李思琦), Dong-Qi Zhang(张东祺), Tao Tao(陶涛), Qing-Jun Xu(徐庆君), Zi-Li Xie(谢自力), Jian-Dong Ye(叶建东), Dun-Jun Chen(陈敦军), Bin Liu(刘斌), Ke Wang(王科), You-Dou Zheng(郑有炓), and Rong Zhang(张荣). Chin. Phys. B, 2022, 31(1): 018102.
[12] Distribution of donor states on the surfaceof AlGaN/GaN heterostructures
Yue-Bo Liu(柳月波), Hong-Hui Liu(刘红辉), Jun-Yu Shen(沈俊宇), Wan-Qing Yao(姚婉青), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(12): 128102.
[13] Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots
Guo-Feng Wu(武国峰), Jun Wang(王俊), Wei-Rong Chen(陈维荣), Li-Na Zhu(祝丽娜), Yuan-Qing Yang(杨苑青), Jia-Chen Li(李家琛), Chun-Yang Xiao(肖春阳), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(11): 110201.
[14] Degradation and its fast recovery in a-IGZO thin-film transistors under negative gate bias stress
Jianing Guo(郭佳宁), Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Huaisheng Wang(王槐生). Chin. Phys. B, 2021, 30(11): 118102.
[15] Effect of nitrogen gas flow and growth temperature on extension of GaN layer on Si
Jian-Kai Xu(徐健凯), Li-Juan Jiang(姜丽娟), Qian Wang(王茜), Quan Wang(王权), Hong-Ling Xiao(肖红领), Chun Feng(冯春), Wei Li(李巍), and Xiao-Liang Wang(王晓亮). Chin. Phys. B, 2021, 30(11): 118101.
No Suggested Reading articles found!