Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 027101    DOI: 10.1088/1674-1056/27/2/027101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic structures and optical properties of HfO2-TiO2 alloys studied by first-principles GGA+ U approach

Jin-Ping Li(李金平)1, Song-He Meng(孟松鹤)1, Cheng Yang(杨程)1, Han-Tao Lu(陆汉涛)2, Takami Tohyama(遠山貴巳)3
1. Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150080, China;
2. Center for Interdisciplinary Studies & Key Laboratory for Magnetism and Magnetic Materials of the MoE, Lanzhou University, Lanzhou 730000, China;
3. Department of Applied Physics, Tokyo University of Science, Tokyo 125-8585, Japan
Abstract  The phase diagram of HfO2-TiO2 system shows that when Ti content is less than 33.0 mol%, HfO2-TiO2 system is monoclinic; when Ti content increases from 33.0 mol% to 52.0 mol%, it is orthorhombic; when Ti content reaches more than 52.0 mol%, it presents rutile phase. So, we choose the three phases of HfO2-TiO2 alloys with different Ti content values. The electronic structures and optical properties of monoclinic, orthorhombic and rutile phases of HfO2-TiO2 alloys are obtained by the first-principles generalized gradient approximation (GGA)+U approach, and the effects of Ti content and crystal structure on the electronic structures and optical properties of HfO2-TiO2 alloys are investigated. By introducing the Coulomb interactions of 5d orbitals on Hf atom (U1d), those of 3d orbitals on Ti atom (U2d), and those of 2p orbitals on O atom (Up) simultaneously, we can improve the calculation values of the band gaps, where U1d, U2d, and Up values are 8.0 eV, 7.0 eV, and 6.0 eV for both the monoclinic phase and orthorhombic phase, and 8.0 eV, 7.0 eV, and 3.5 eV for the rutile phase. The electronic structures and optical properties of the HfO2-TiO2 alloys calculated by GGA+U1d (U1d=8.0 eV)+U2d (U2d=7.0 eV)+Up (Up=6.0 eV or 3.5 eV) are compared with available experimental results.
Keywords:  HfO2-TiO2 alloys      GGA+U      electronic structure      optical properties  
Received:  29 August 2017      Revised:  05 November 2017      Accepted manuscript online: 
PACS:  71.15.-m (Methods of electronic structure calculations)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  78.20.Fm (Birefringence)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11672087, 11502058, and 11402252).
Corresponding Authors:  Jin-Ping Li     E-mail:  lijinping@hit.edu.cn
About author:  71.15.-m; 71.15.Mb; 78.20.Ci; 78.20.Fm

Cite this article: 

Jin-Ping Li(李金平), Song-He Meng(孟松鹤), Cheng Yang(杨程), Han-Tao Lu(陆汉涛), Takami Tohyama(遠山貴巳) Electronic structures and optical properties of HfO2-TiO2 alloys studied by first-principles GGA+ U approach 2018 Chin. Phys. B 27 027101

[1] Qian T, Kueltzo A, Manish S, Jursich G and Takoudis C G 2011 J. Electrochem. Soc. 158 G27
[2] Errandonea D, Santamaria-Perez D, Bondarenko T and Khyzhun O 2010 Mater. Res. Bull. 45 1732
[3] Coutures J P and Coutures J 1987 J. Am. Ceram. Soc. 70 383
[4] Mazdiyasni K S and Brown L M 1970 J. Am. Ceram. Soc. 53 585
[5] Yamamoto A, Yamada T, Ikawa H, Fukunaga O, Tanaka K and Marumo F 1991 Acta Cryst. C 47 1588
[6] Seo M, Kim S K, Min Y S and Hwang C S 2011 J. Mater. Chem. 21 18497
[7] Krebs M A and Sr R A C 1988 J. Mater. Sci. Lett. 7 1327
[8] Cisneros-Morales M C and Aita C R 2008 Appl. Phys. Lett. 93 021915
[9] Popovici M, Delabie A, Elshocht S V, Clima S, Pourtois G, Nyns L, Tomida K, Menou N, Opsomer K, Swerts J, Detavernier C, Wouters D, and Kittla J A 2009 J. Electrochem. Soc. 156 G145
[10] Triyoso D H, Hegde R I, Zollner S, Ramon M E, Kalpat S, Gregory R, Wang X D, Jiang J, Raymond M, Rai R, Werho D, Roan D, White B E Jr and Tobin P J 2005 J. Appl. Phys. 98 054104
[11] Mazur M, Wojcieszak D, Domaradzki J, Kaczmarek D, Poniedzialek A, and Domanowski P 2015 Mater. Res. Bull. 72 116
[12] Loschen C, Carrasco J, Neyman K M and Illas F 2007 Phys. Rev. B 75 035115
[13] Li J P, Han J C, Meng S H, Lu H T and Tohyama T 2013 Appl. Phys. Lett. 103 071916
[14] Li J P, Meng S H, Qin L Y and Lu H T 2017 Chin. Phys. B 26 087101
[15] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.:Condens. Matter 14 2717
[16] Asahi R, Taga Y, Mannstadt W and Freeman A J 2000 Phys. Rev. B 61 7459
[17] Choi H, Stathatos E and Dionysiou D D 2006 Appl. Catal. B:Environ. 63 60
[18] Cromer D T and Herrington K 1955 J. Am. Chem. Soc. 77 4708
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[4] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[5] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[6] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[7] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[8] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[9] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[10] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[11] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[12] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[13] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[14] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[15] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
No Suggested Reading articles found!