Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 024205    DOI: 10.1088/1674-1056/abc155

Dynamic measurement of beam divergence angle of different fields of view of scanning lidar

Qing-Yan Li(李青岩), Shi-Yu Yan(闫诗雨), Bin Zhang(张斌), and Chun-Hui Wang(王春晖)†
National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001, China
Abstract  The laser beam divergence angle is one of the important parameters to evaluate the quality of the laser beam. It can not only accurately indicate the nature of the beam divergence when the laser beam is transmitted over a long distance, but also objectively evaluate the performance of the laser system. At present, lidar has received a lot of attention as a core component of environment awareness technology. Micro-electromechanical system (MEMS) micromirror has become the first choice for three-dimensional imaging lidar because of its small size and fast scanning speed. However, due to the small size of the MEMS micromirror, the lidar scanning system has a small field of view (FOV). In order to achieve a wide range of scanning imaging, collimating optical system and wide-angle optical system are generally added to the system. However, due to the inherent properties of the optical lens, it is impossible to perfect the imaging, so the effects of collimating and expanding the beam will be different at different angles. This article aims to propose a measurement system that dynamically measures the divergence angles of MEMS scanning lidar beams in different fields of view to objectively evaluate the performances of scanning lidar systems.
Keywords:  laser divergence angle      lidar      CCD      different fields of view (FOV)  
Received:  30 July 2020      Revised:  28 August 2020      Accepted manuscript online:  15 October 2020
PACS:  42.55.-f (Lasers)  
  42.79.Qx (Range finders, remote sensing devices; laser Doppler velocimeters, SAR, And LIDAR)  
  42.30.-d (Imaging and optical processing)  
Fund: Project supported by the National Key Scientific Instrument and Equipment Development Projects of China (Grant No. 62027823), the Shenzhen Fundamental Research Program (Grant No. JCYJ2020109150808037), and the National Natural Science Foundation of China (Grant No. 61775048).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Qing-Yan Li(李青岩), Shi-Yu Yan(闫诗雨), Bin Zhang(张斌), and Chun-Hui Wang(王春晖) Dynamic measurement of beam divergence angle of different fields of view of scanning lidar 2021 Chin. Phys. B 30 024205

1 Barton-Grimley R A, Stillwell R A and Thayer J P 2018 Opt. express 20 26030
2 Li Y X, Cui T X, Li Q Y, Zhang B, Bai Y R and Wang C H 2019 Optik 181 555
3 Sun Y F, Zhang Z J, Zhao L Y, Sun W M and Zhao Y 2018 Chin. Phys. B 27 094213
4 Liu H, Chen P, Mao Z H, Pan D L and He Y 2018 Opt. Express 26 29134
5 Wei L, Yin C, Fujita Y, Sanai N and Liu J T 2019 Opt. Lett. 3 671
6 Xing J C and Song Y 2012 6th International Symposium on Advanced Optical Manufacturing and Testing Technologies, October 15, 2012 Xiamen, China, 84171W
7 Chen Y, Tang J, Jiang C, Zhu L, Lehtom\"aki M, Kaartinen H, and Zhou H 2018 Sensors 18 3228
8 Huang L, Li S, Zhu A, Fan X, Zhang C and Wang H 2018 Sensors 9 3014
9 Du B C, Li Z H, Shen G Y, Zheng T X, Zhang H Y, Yang L and Wu G 2019 Chin. Phys. Lett. 36 094201
10 Pang Y J, Zhang Y X, Yang H D, Zhu P, Gai Y, Zhao J and Huang Z H 2016 Infrared Phys. Technol. 78 129
11 Li Q M, Li S C, Qin Y L, Hu X L, Zhao J, Song Y H and Hua D X 2018 Acta Phys. Sin. 67 014207 (in Chinese)
12 Shi S B, Chen Z X and Lv Y 2016 8th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test, Measurement Technology, and Equipment, April 26-29, Suzhou, China, 96840Y
13 Hasi W L J, Lu H H, Gong S, Fu M L, Lv Z W, Lin D Y, and He W M 2009 Chin. Phys. B 18 2835
14 Tan W, Wang X B, Zhu B H, Sheng D Y, Liu S Y and Zhu M Z 2016 Selected Proceedings of the Chinese Society for Optical Engineering Conferences, November, 2015, China, 97961C
[1] Design of three-dimensional imaging lidar optical system for large field of view scanning
Qing-Yan Li(李青岩), Yu Zhang(张雨), Shi-Yu Yan(闫诗雨),Bin Zhang(张斌), and Chun-Hui Wang(王春晖). Chin. Phys. B, 2022, 31(7): 074201.
[2] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[3] A scanning distortion correction method based on X- Y galvanometer Lidar system
Bao-Ling Qi(漆保凌), Chun-Hui Wang(王春晖), Dong-Bing Guo(郭东兵), and Bin Zhang(张斌). Chin. Phys. B, 2021, 30(4): 044206.
[4] New measuring method of fiber alignment in precision torsion pendulum experiments
Bing-Jie Wang(王冰洁), Li Xu(徐利), Wei-You Zeng(曾维友), Qing-Lan Wang(王晴岚). Chin. Phys. B, 2020, 29(8): 080401.
[5] Improved spatial filtering velocimetry and its application in granular flow measurement
Ping Kong(孔平), Bi-De Wang(王必得), Peng Wang(王蓬), Zivkovic V, Jian-Qing Zhang(张建青). Chin. Phys. B, 2020, 29(7): 074201.
[6] Feasibility analysis for acquiring visibility based on lidar signal using genetic algorithm-optimized back propagation algorithm
Guo-Dong Sun(孙国栋), Lai-An Qin(秦来安), Zai-Hong Hou(侯再红), Xu Jing(靖旭), Feng He(何枫), Feng-Fu Tan(谭逢富), Si-Long Zhang(张巳龙), Shou-Chuan Zhang(张守川). Chin. Phys. B, 2019, 28(2): 024213.
[7] Detection performance improvement of photon counting chirped amplitude modulation lidar with response probability correction
Yi-Fei Sun(孙怿飞), Zi-Jing Zhang(张子静), Li-Yuan Zhao(赵丽媛), Wei-Min Sun(孙伟民), Yuan Zhao(赵远). Chin. Phys. B, 2018, 27(9): 094213.
[8] A rapid and convenient experimental method of absolutely calibrating transmission of x-ray flat-response filter
Jian Yu(余建), Li-Fei Hou(候立飞), Jing Wang(王静), Wen-Hai Zhang(张文海), Ming Chen(陈铭), Bao-Chong Zhou(周保充), Sha-Li Xiao(肖沙里), Shen-Ye Liu(刘慎业). Chin. Phys. B, 2018, 27(10): 100702.
[9] Photon-counting chirped amplitude modulation lidar system using superconducting nanowire single-photon detector at 1550-nm wavelength
Hui Zhou(周慧), Yu-Hao He(何宇昊), Chao-Lin Lü(吕超林), Li-Xing You(尤立星), Zhao-Hui Li(李召辉), Guang Wu(吴光), Wei-Jun Zhang(张伟君), Lu Zhang(张露), Xiao-Yu Liu(刘晓宇), Xiao-Yan Yang(杨晓燕), Zhen Wang(王镇). Chin. Phys. B, 2018, 27(1): 018501.
[10] Detailed calibration of the PI-LCX: 1300 high performance single photon counting hard x-ray CCD camera
Wei Hong(洪伟), Xian-Lun Wen(温贤伦), Lai Wei(魏来), Bin Zhu(朱斌), Yu-Chi Wu(吴玉迟), Ke-Gong Dong(董克攻), Chun-Ye Jiao(焦春晔), Bo Wu(伍波), Ying-Ling He(何颖玲), Fa-Qiang Zhang(张发强), Wei-Min Zhou(周维民), Yu-Qiu Gu(谷渝秋). Chin. Phys. B, 2017, 26(2): 025204.
[11] High signal-to-noise ratio sensing with Shack-Hartmann wavefront sensor based on auto gain control of electron multiplying CCD
Zhao-Yi Zhu(朱召义), Da-Yu Li(李大禹), Li-Fa Hu(胡立发), Quan-Quan Mu(穆全全), Cheng-Liang Yang(杨程亮), Zhao-Liang Cao(曹召良), Li Xuan(宣丽). Chin. Phys. B, 2016, 25(9): 090702.
[12] Optimized calculation of the synergy conditions between electron cyclotron current drive and lower hybrid current drive on EAST
Wei Wei(韦维), Bo-Jiang Ding(丁伯江), Y Peysson, J Decker, Miao-Hui Li(李妙辉),Xin-Jun Zhang(张新军), Xiao-Jie Wang(王晓洁), Lei Zhang(张磊). Chin. Phys. B, 2016, 25(1): 015201.
[13] Comprehensive wind correction for a Rayleigh Doppler lidar from atmospheric temperature and pressure influences and Mie contamination
Shangguan Ming-Jia (上官明佳), Xia Hai-Yun (夏海云), Dou Xian-Kang (窦贤康), Wang Chong (王冲), Qiu Jia-Wei (裘家伟), Zhang Yun-Peng (张云鹏), Shu Zhi-Feng (舒志峰), Xue Xiang-Hui (薛向辉). Chin. Phys. B, 2015, 24(9): 094212.
[14] Estimation of random errors for lidar based on noise scale factor
Wang Huan-Xue (王欢雪), Liu Jian-Guo (刘建国), Zhang Tian-Shu (张天舒). Chin. Phys. B, 2015, 24(8): 084213.
[15] Correction of temperature influence on the wind retrieval from a mobile Rayleigh Doppler lidar
Zhao Ruo-Can (赵若灿), Xia Hai-Yun (夏海云), Dou Xian-Kang (窦贤康), Sun Dong-Song (孙东松), Han Yu-Li (韩於利), Shangguan Ming-Jia (上官明佳), Guo Jie (郭洁), Shu Zhi-Feng (舒志峰). Chin. Phys. B, 2015, 24(2): 024218.
No Suggested Reading articles found!