Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 044206    DOI: 10.1088/1674-1056/abcf42

A scanning distortion correction method based on X- Y galvanometer Lidar system

Bao-Ling Qi(漆保凌), Chun-Hui Wang(王春晖), Dong-Bing Guo(郭东兵), and Bin Zhang(张斌)
1 Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001, China
Abstract  \baselineskip=12pt plus.2pt minus.2pt Aiming at the problem of scanning distortion in X-Y galvanometer light detecting and ranging (Lidar) scanning system, we propose a method of image scanning distortion correction with controllable driving voltage compensation. Firstly, the geometrical optics vectors model is established to explain the principle of pincushion distortion in the galvanometer scanning system, and the simulation result of scanning trajectory is consistent with experiments. The linear relationship between the driving voltage and the scanning angle of the galvanometer is verified. Secondly, the relationship between the deflection angle of the galvanometer and the scanning trajectory and the driving voltage is deduced respectively, and an image scanning correction algorithm with controllable driving voltage compensation is obtained. The simulation experiment results of the proposed method show that the root-mean-square error (RMSE) and the corresponding curve between the scan value and the actual value at different distances, have a good correction effect for the pincushion distortion. Finally, the X-Y galvanometer scanning Lidar system is established to obtain undistorted two-dimensional scanned image and it can be applied to the three-dimensional Lidar scanning system in the actual experiments, which further demonstrates the feasibility and practicability of our method.
Keywords:  Lidar      laser scanning      optical vector model      image scanning  
Received:  28 August 2020      Revised:  09 November 2020      Accepted manuscript online:  01 December 2020
PACS:  42.68.Wt (Remote sensing; LIDAR and adaptive systems)  
  42.55.-f (Lasers)  
  11.90.+t (Other topics in general theory of fields and particles)  
  42.30.-d (Imaging and optical processing)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61775048 and 62027823) and the Natural Science Foundation of Shenzhen (Grant No. JCYJ2020109150808037).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Bao-Ling Qi(漆保凌), Chun-Hui Wang(王春晖), Dong-Bing Guo(郭东兵), and Bin Zhang(张斌) A scanning distortion correction method based on X- Y galvanometer Lidar system 2021 Chin. Phys. B 30 044206

1 McManamon and Paul F 2012 Opt. Eng. 51 060901
2 Du J, Ren D M, Zhao W J, Qu Y C, Chen Z L and Geng L J 2013 Chin. Phys. B 22 024211
3 Sun G D, Qin L A, Hou Z H, Xu J, He F, Tan F F, Zhang S L and Zhang S C 2019 Chin. Phys. B 28 024213
4 Price O F and Gordon C E 2016 J. Environ. Manage. 181 663
5 Adam C, Eric L K and Philip A T 2020 Remote Sens. Environ. 250 112043
6 Mao Y X, Flueraru C, Sherif S and Chang S D 2009 Opt. Commun. 282 88
7 Mcmanamon P F, Banks P S, Beck J D, Fried D G and Waston E A 2017 Opt. Eng. 56 031223
8 Moritz B, Andreas R, Michael E S and Morsdorf F 2017 Remote. Sens. Environ. 196 28
9 Xu X K, Liu B G, Chen F D, Hu T, Lu C and Gan Y 2017 Opt. Commun. 386 57
10 Awkward R P 2003 Sens. Rev. 23 216
11 Batal A, Michalek A, Penchev P, Kupisiewicz A and Dimov S 2020 Int. J. Mach. Tools Manuf. 156 103593
12 Yoo H W, Ito S and Schitter G 2016 Control. Eng. Practice 50 12
13 Li Y X, Cui T X, Li Q Y, Zhang B, Bai Y R and Wang C H 2019 Optik 181 555
14 Hayakawa T and Ishikawa M 2017 SPIE LASE 10085 100850Z
15 Delgado M A O, Lasagni A F 2016 Opt. Lasers Eng. 86 106
16 Duma V F 2019 Appl. Math. Model. 67 456
17 Petr P 2014 Appl. Opt. 53 2730
18 Wang Y F, Zhang J, Tang L, Wang Q, Gao T L, Song Y H, Di H G, Li B and Hua D X 2018 Acta Phys. Sin. 67 224205 (in Chinese)
19 Madeline H, Calum M A, Pierre L and Lee A M D 2018 Opt. Express 26 18758
[1] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[2] Design of three-dimensional imaging lidar optical system for large field of view scanning
Qing-Yan Li(李青岩), Yu Zhang(张雨), Shi-Yu Yan(闫诗雨),Bin Zhang(张斌), and Chun-Hui Wang(王春晖). Chin. Phys. B, 2022, 31(7): 074201.
[3] Dynamic measurement of beam divergence angle of different fields of view of scanning lidar
Qing-Yan Li(李青岩), Shi-Yu Yan(闫诗雨), Bin Zhang(张斌), and Chun-Hui Wang(王春晖). Chin. Phys. B, 2021, 30(2): 024205.
[4] Feasibility analysis for acquiring visibility based on lidar signal using genetic algorithm-optimized back propagation algorithm
Guo-Dong Sun(孙国栋), Lai-An Qin(秦来安), Zai-Hong Hou(侯再红), Xu Jing(靖旭), Feng He(何枫), Feng-Fu Tan(谭逢富), Si-Long Zhang(张巳龙), Shou-Chuan Zhang(张守川). Chin. Phys. B, 2019, 28(2): 024213.
[5] Detection performance improvement of photon counting chirped amplitude modulation lidar with response probability correction
Yi-Fei Sun(孙怿飞), Zi-Jing Zhang(张子静), Li-Yuan Zhao(赵丽媛), Wei-Min Sun(孙伟民), Yuan Zhao(赵远). Chin. Phys. B, 2018, 27(9): 094213.
[6] Photon-counting chirped amplitude modulation lidar system using superconducting nanowire single-photon detector at 1550-nm wavelength
Hui Zhou(周慧), Yu-Hao He(何宇昊), Chao-Lin Lü(吕超林), Li-Xing You(尤立星), Zhao-Hui Li(李召辉), Guang Wu(吴光), Wei-Jun Zhang(张伟君), Lu Zhang(张露), Xiao-Yu Liu(刘晓宇), Xiao-Yan Yang(杨晓燕), Zhen Wang(王镇). Chin. Phys. B, 2018, 27(1): 018501.
[7] Comprehensive wind correction for a Rayleigh Doppler lidar from atmospheric temperature and pressure influences and Mie contamination
Shangguan Ming-Jia (上官明佳), Xia Hai-Yun (夏海云), Dou Xian-Kang (窦贤康), Wang Chong (王冲), Qiu Jia-Wei (裘家伟), Zhang Yun-Peng (张云鹏), Shu Zhi-Feng (舒志峰), Xue Xiang-Hui (薛向辉). Chin. Phys. B, 2015, 24(9): 094212.
[8] Estimation of random errors for lidar based on noise scale factor
Wang Huan-Xue (王欢雪), Liu Jian-Guo (刘建国), Zhang Tian-Shu (张天舒). Chin. Phys. B, 2015, 24(8): 084213.
[9] Correction of temperature influence on the wind retrieval from a mobile Rayleigh Doppler lidar
Zhao Ruo-Can (赵若灿), Xia Hai-Yun (夏海云), Dou Xian-Kang (窦贤康), Sun Dong-Song (孙东松), Han Yu-Li (韩於利), Shangguan Ming-Jia (上官明佳), Guo Jie (郭洁), Shu Zhi-Feng (舒志峰). Chin. Phys. B, 2015, 24(2): 024218.
[10] V-L decomposition of a novel full-waveform lidar system based on virtual instrument technique
Xu Fan (徐帆), Wang Yuan-Qing (王元庆). Chin. Phys. B, 2015, 24(10): 104214.
[11] Theoretical description of improving measurement accuracy for incoherence Mie Doppler wind lidar
Du Jun (杜军), Ren De-Ming (任德明), Zhao Wei-Jiang (赵卫疆), Qu Yan-Chen (曲彦臣), Chen Zhen-Lei (陈振雷), Geng Li-Jie (耿利杰 ). Chin. Phys. B, 2013, 22(2): 024211.
[12] High-sensitive automatic transient laser-induced breakdown spectroscopy system with high temporal and spatial resolution
Liu Qiao-Jun (刘巧君), S. K. Fong (冯瑞权), Andrew Y. S. Cheng (郑玉臣), Luo Shi-Rong (罗时荣), K. S. Tam (谭建成), Zhu Jian-Hua (朱建华), A. Viseu (冼保生). Chin. Phys. B, 2012, 21(8): 087402.
[13] Real time detection of antibody–antigen interaction using a laser scanning confocal imaging-surface plasmon resonance system
Zhang Hong-Yan(张洪艳), Yang Li-Quan(杨立泉), Meng Lan(孟岚), Nie Jia-Cai(聂家财), Ning Ting-Yin(宁廷银), Liu Wei-Min(刘卫敏), Sun Jia-Yu(孙嘉宇), and Wang Peng-Fei(汪鹏飞) . Chin. Phys. B, 2012, 21(2): 020601.
[14] Capability of Raman lidar for monitoring the variation of atmospheric CO2 profile
Zhao Pei-Tao(赵培涛), Zhang Yin-Chao(张寅超), Wang Lian(王莲), Hu Shun-Xing(胡顺星), Su Jia(苏嘉), Cao Kai-Fa(曹开法), Zhao Yue-Feng(赵曰峰), and Hu Huan-Ling(胡欢陵) . Chin. Phys. B, 2008, 17(1): 335-342.
[15] Analysis of influence of atmosphere extinction to Raman lidar monitoring CO2 concentration profile
Zhao Pei-Tao(赵培涛), Zhang Yin-Chao(张寅超), Wang Lian(王莲), Zhao Yue-Feng(赵曰峰), Su Jia(苏嘉), Fang Xin(方欣), Cao Kai-Fa(曹开法), Xie Jun(谢军), and Du Xiao-Yong(杜小勇). Chin. Phys. B, 2007, 16(8): 2486-2491.
No Suggested Reading articles found!