Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 074201    DOI: 10.1088/1674-1056/ac4a67
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Design of three-dimensional imaging lidar optical system for large field of view scanning

Qing-Yan Li(李青岩)1,2, Yu Zhang(张雨)1, Shi-Yu Yan(闫诗雨)1, Bin Zhang(张斌)1, and Chun-Hui Wang(王春晖)1,2,†
1 National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001, China;
2 Geling Institute of Artificial Intelligence and Robotics, Shenzhen 518063, China
Abstract  Three-dimensional (3D) lidar has been widely used in various fields. The MEMS scanning system is one of its most important components, while the limitation of scanning angle is the main obstacle to improve the demerit for its application in various fields. In this paper, a folded large field of view scanning optical system is proposed. The structure and parameters of the system are determined by theoretical derivation of ray tracing. The optical design software Zemax is used to design the system. After optimization, the final structure performs well in collimation and beam expansion. The results show that the scan angle can be expanded from ±5° to ±26.5°, and finally the parallel light scanning is realized. The spot diagram at a distance of 100 mm from the exit surface shows that the maximum radius of the spot is 0.506 mm with a uniformly distributed spot. The maximum radius of the spot at 100 m is 19 cm, and the diffusion angle is less than 2 mrad. The energy concentration in the spot range is greater than 90% with a high system energy concentration, and the parallelism is good. This design overcomes the shortcoming of the small mechanical scanning angle of the MEMS lidar, and has good performance in collimation and beam expansion. It provides a design method for large-scale application of MEMS lidar.
Keywords:  3D lidar      MEMS scanning system      large field of view scanning      Zemax  
Received:  29 October 2021      Revised:  10 January 2022      Accepted manuscript online:  12 January 2022
PACS:  42.15.Eq (Optical system design)  
  42.15.Dp (Wave fronts and ray tracing)  
  42.25.Hz (Interference)  
  42.66.Lc (Vision: light detection, adaptation, and discrimination)  
Fund: Project supported by the Shenzhen Fundamental Research Program (Grant No. JCYJ2020109150808037), the National Key Scientific Instrument and Equipment Development Projects of China (Grant No. 62027823), and the National Natural Science Foundation of China (Grant No. 61775048).
Corresponding Authors:  Chun-Hui Wang     E-mail:  wangch_hit@163.com

Cite this article: 

Qing-Yan Li(李青岩), Yu Zhang(张雨), Shi-Yu Yan(闫诗雨),Bin Zhang(张斌), and Chun-Hui Wang(王春晖) Design of three-dimensional imaging lidar optical system for large field of view scanning 2022 Chin. Phys. B 31 074201

[1] Liu H, Chen P, Mao Z H, Pan D L and He Y 2018 Opt. Express 26 29134
[2] Barton-Grimley R A, Stillwell R A and Thayer J P 2018 Opt. Express 26 26030
[3] Kong Z, Liu Z, Zhang L S, Guan P, Li L M and Mei L 2018 Sensors 18 1880
[4] Chen Y W, Tang J, Jiang C H, Zhu L L, Lehtomaki M, Kaartinen H, Kaijaluoto R, Wang Y W, Hyyppa J, Hyyppa H, Zhou H, Pei L and Chen R Z 2018 Sensors 18 3228
[5] Shangguan M J, Xia H Y, Dou X K, Wang C, Qiu J W, Zhang Y P, Shu Z F and Xue X H 2015 Chin. Phys. B 24 094212
[6] Huang L W, Li S Q, Zhu A Q, Fan X Y, Zhang C Y and Wang H Y 2018 Sensors 18 3014
[7] Du B C, Li Z H, Shen G Y, Zheng T X, Zhang H Y, Yang L and Wu G 2019 Chin. Phys. Lett. 36 094201
[8] Li Y X, Cui T X, Li Q Y, Zhang B, Bai Y R and Wang C H 2019 Optik 181 555
[9] Jeong J, Yoon T S and Park J B 2018 Sensors 18 2571
[10] Baeg S H, Park S D, Shin J O and Cho K U S Patent 09091535[2015-7-28]
[11] Schwarz B 2010 Nat. Photonics 7 429
[12] Srettner R 2010 Laser Radar Technology and Applications XV, May 4, Orlando, United States 768405
[13] Chen C I and Stettner R 2011 Laser Radar Technology and Applications XVI, June 8, Orlando, United States 80370Q
[14] Poulton C V, Yaacobi A, Cole D B, Byrd M J, Raval M, Vermeulen D and Watts M R 2017 Opt. Lett. 42 4091
[15] Miller S A, Chang Y C, Phare C T, Shin M C, Zadka M, Roberts S P, Stern B, Ji X C, Mohanty A, Gordillo O A J, Dave U D and Lipson M 2020 Optica 7 3
[16] Li Q Y, Yan S Y, Zhang B and Wang C H 2021 Chin. Phys. B 30 024205
[17] Qi B L, Wang C H, Guo D B and Zhang B 2021 Chin. Phys. B 30 044206
[18] Li Q Y, Yang Y F, Yan S Y, Zhang B and Wang C H 2021 Optik 246 167760
[19] Niclass C, Ito K, Soga M, Matsubara H, Aoyagi I, Kato S and Kagami M 2012 Opt. Express 20 11863
[20] Pang Y J, Zhang Y X, Yang H D, Zhu P, Gai Y, Zhao J and Huang Z H 2016 Infrared Phys. Technol. 78 129
[21] Milanovic V, Castelino K and McCormick D T 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS), Jan 21-25, Hyogo, Japan, 143
[22] Marchuk S M 2006 J. Opt. Technol. 73 846
[23] Yoo H W, Druml N, Brunner D, Schwarzl C, Thurner T, Hennecke M and Schitter G 2018 Elektrotech. Informationstechnik 135 408
[24] Sun Y F, Zhang Z J, Zhao L Y, Sun W M and Zhao Y 2018 Chin. Phys. B 27 094213
[25] Tang L, Wang C R, Wu H B and Dong J H 2012 Chin. Phys. Lett. 29 014213
[26] Sheil C J and Goncharov A V 2019 Opt. Commun. 440 207
[27] Zhu C X, Hobbs M J, Grainger M P and Willmott J R 2018 Appl. Opt. 57 10449
[28] Feng L 2019 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies:Optical Test, Measurement Technology, and Equipment, January 18, Chengdu, China, 108391G
[29] Huang Q, Duan X Y, He Y W, Qiu Y S, Li H J and Li G M 2019 Opt. Laser Technol. 112 229
[1] Research on the model of high robustness computational optical imaging system
Yun Su(苏云), Teli Xi(席特立), and Xiaopeng Shao(邵晓鹏). Chin. Phys. B, 2023, 32(2): 024202.
[2] Enhanced single photon emission in silicon carbide with Bull's eye cavities
Xing-Hua Liu(刘兴华), Fang-Fang Ren(任芳芳), Jiandong Ye(叶建东), Shuxiao Wang(王书晓), Wei-Zong Xu(徐尉宗), Dong Zhou(周东), Mingbin Yu(余明斌), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2022, 31(10): 104206.
[3] Bandwidth expansion and pulse shape optimized for 10 PW laser design via spectral shaping
Da-Wei Li(李大为), Tao Wang(王韬), Xiao-Lei Yin(尹晓蕾), Li Wang(王利), Jia-Mei Li(李佳美),Hui Yu(余惠), Yong Cui(崔勇), Tian-Xiong Zhang(张天雄), Xing-Qiang Lu(卢兴强), and Guang Xu(徐光). Chin. Phys. B, 2022, 31(9): 094210.
[4] New multiplexed system for synchronous measurement of out-of-plane deformation and two orthogonal slopes
Yonghong Wang(王永红), Xiao Zhang(张肖), Qihan Zhao(赵琪涵), Yanfeng Yao(姚彦峰), Peizheng Yan(闫佩正), and Biao Wang(王标). Chin. Phys. B, 2022, 31(3): 034202.
[5] Digital synthesis of programmable photonic integrated circuits
Juan Zhang(张娟), Zhengyong Ji(计正勇), Yipeng Ding(丁一鹏), and Yang Wang(王阳). Chin. Phys. B, 2022, 31(2): 024208.
[6] Tunable terahertz transmission behaviors and coupling mechanism in hybrid MoS2 metamaterials
Yuwang Deng(邓雨旺), Qingli Zhou(周庆莉), Wanlin Liang(梁菀琳), Pujing Zhang(张朴婧), and Cunlin Zhang(张存林). Chin. Phys. B, 2022, 31(1): 014101.
[7] Analysis of natural frequency for imaging interface in liquid lens
Na Xie(谢娜). Chin. Phys. B, 2021, 30(10): 104702.
[8] Multiple induced transparency in a hybrid driven cavity optomechanical device with a two-level system
Wei Zhang(张伟), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), and Zhong-Yang Wang(王中阳). Chin. Phys. B, 2021, 30(9): 094203.
[9] Reversible waveform conversion between microwave and optical fields in a hybrid opto-electromechanical system
Li-Guo Qin(秦立国), Zhong-Yang Wang(王中阳), Jie-Hui Huang(黄接辉), Li-Jun Tian(田立君), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(6): 068502.
[10] Narrow-band high-transmittance birefringent filter and its application in wide color gamut display
Chi Zhang(张弛), Rui Niu(牛瑞), Wenjuan Li(李文娟), Xiaoshuai Li(李小帅), Hongmei Ma(马红梅), and Yubao Sun(孙玉宝). Chin. Phys. B, 2021, 30(5): 054207.
[11] Controlling multiple optomechanically induced transparency in the distant cavity-optomechanical system
Rui-Jie Xiao(肖瑞杰), Gui-Xia Pan(潘桂侠), and Xiao-Ming Xiu(修晓明). Chin. Phys. B, 2021, 30(3): 034209.
[12] An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators
Bo-Yun Wang(王波云), Yue-Hong Zhu(朱月红), Jing Zhang(张静), Qing-Dong Zeng(曾庆栋), Jun Du(杜君), Tao Wang(王涛), Hua-Qing Yu(余华清). Chin. Phys. B, 2020, 29(8): 084211.
[13] Extraordinary propagation characteristics of electromagnetic waves in one-dimensional anti-PT-symmetric ring optical waveguide network
Jie-Feng Xu(许杰锋), Xiang-Bo Yang(杨湘波), Hao-Han Chen(陈浩瀚), Zhan-Hong Lin(林展鸿). Chin. Phys. B, 2020, 29(6): 064201.
[14] Wide color gamut switchable autostereoscopic 3D display based on directional quantum-dot backlight
Bin Xu(徐斌), Xue-Ling Li(李雪玲), Yuan-Qing Wang(王元庆). Chin. Phys. B, 2019, 28(12): 124208.
[15] Opto-electromechanically induced transparency in a hybrid opto-electromechanical system
Hui Liu(刘慧), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2019, 28(10): 108502.
No Suggested Reading articles found!