Broadrange tunable slow and fast light in quantum dot photonic crystal structure
Alireza Lotfian1, Reza Yadipour1, Hamed Baghban2
1. Department of Electrical and Computer Engineering, University of Tabriz, Tabriz 5166614761, Iran; 2. School of Engineering-Emerging Technologies, University of Tabriz, Tabriz 5166614761, Iran
Abstract Slow and fast light processes, based on both structural and material dispersions, are realized in a wide tuning range in this article. Coherent population oscillations (CPO) in electrically tunable quantum dot semiconductor optical amplifiers lead to a variable group index ranging from the background index (nbgd) to~30. A photonic crystal waveguide is then dispersion engineered and a group index of 260 with the normalized delay-bandwidth product (NDBP) of 0.65 is achieved in the proposed waveguide. Using comprehensive numerical simulations, we show that a considerable enhancement of slow light effect can be achieved by combining both the material and the structural dispersions in the proposed active QDPCW structure. We compare our developed FDTD results with analytical results and show that there is good agreement between the results, which demonstrates that the proposed electrically-tunable slow light idea is obtainable in the QDPCW structure. We achieve a total group index in a wide tuning range from nbgd to~1500 at the operation bandwidth, which shows a significant enhancement compared with the schemes based only on material or structural dispersions. The tuning range and also NDBP of the slow light scheme are much larger than those of the electrically tunable CPO process.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.