Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 124207    DOI: 10.1088/1674-1056/26/12/124207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Broadrange tunable slow and fast light in quantum dot photonic crystal structure

Alireza Lotfian1, Reza Yadipour1, Hamed Baghban2
1. Department of Electrical and Computer Engineering, University of Tabriz, Tabriz 5166614761, Iran;
2. School of Engineering-Emerging Technologies, University of Tabriz, Tabriz 5166614761, Iran
Abstract  Slow and fast light processes, based on both structural and material dispersions, are realized in a wide tuning range in this article. Coherent population oscillations (CPO) in electrically tunable quantum dot semiconductor optical amplifiers lead to a variable group index ranging from the background index (nbgd) to~30. A photonic crystal waveguide is then dispersion engineered and a group index of 260 with the normalized delay-bandwidth product (NDBP) of 0.65 is achieved in the proposed waveguide. Using comprehensive numerical simulations, we show that a considerable enhancement of slow light effect can be achieved by combining both the material and the structural dispersions in the proposed active QDPCW structure. We compare our developed FDTD results with analytical results and show that there is good agreement between the results, which demonstrates that the proposed electrically-tunable slow light idea is obtainable in the QDPCW structure. We achieve a total group index in a wide tuning range from nbgd to~1500 at the operation bandwidth, which shows a significant enhancement compared with the schemes based only on material or structural dispersions. The tuning range and also NDBP of the slow light scheme are much larger than those of the electrically tunable CPO process.
Keywords:  photonic crystal      quantum dot      slow light      semiconductor optical amplifier  
Received:  25 April 2017      Revised:  03 August 2017      Accepted manuscript online: 
PACS:  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  42.50.Nn (Quantum optical phenomena in absorbing, amplifying, dispersive and conducting media; cooperative phenomena in quantum optical systems)  
Corresponding Authors:  Alireza Lotfian     E-mail:  Lotfian@tabrizu.ac.ir

Cite this article: 

Alireza Lotfian, Reza Yadipour, Hamed Baghban Broadrange tunable slow and fast light in quantum dot photonic crystal structure 2017 Chin. Phys. B 26 124207

[1] Tucker R, Ku P and Chang-Hasnain C 2005 IEEE J. Lightwave. Tech. 23 4046
[2] Zhang B, Yan L S, Yang J Y, et al. 2007 IEEE Photon. Tech. Lett. 19 1081
[3] Kapasi A, Jain M, Yin G Y, et al. 1995 Phys. Rev. Lett. 74 2447
[4] HauL V, Harris S E, Dutton Z, et al. 1999 Nature 397 594
[5] Bigelow M, Lepeshkin N and Boyd R W 2003 Science 301 200
[6] Okawachi Y, Foster A, Sharping E, et al. 2006 Opt. Express 14 2317
[7] Yu C, Yan L, Willner S P, et al. 2007 IEEE Photon. Tech. Lett. 19 861
[8] Okawachi Y, Bigelow S, Sharping E, et al. 2005 Phys. Rev. Lett. 94 153902
[9] Dong D S, Zhou Z Y and Shi B S 2013 Chin. Phys. B 22 114203
[10] Minkov M and Savona V 2015 Optica OSA 2 631
[11] Xing M X, Zheng W H, Zhou W J, et al. 2010 Chin. Phys. Lett. 27 024213
[12] Sharma A and Kumar M 2015 IET Optoelectron. 40 2666
[13] Casas-Bedoya A, Husko C, Monat C, et al. 2012 Opt. Lett. 37 4215
[14] Schulz S A, O'Faolain L, Beggs D M, et al. 2010 J. Opt. 12 104004
[15] Kurt H, ÜstinK and Ayas L 2010 Opt. Express 18 26965
[16] Liang J, Ren L, Yun M, et al. 2011 Appl. Opt. 50 98
[17] Wan Y, Fu K, Li C H, et al. 2013 Opt. Commun. 286 192
[18] Lü S Y, Zhou J L and Zhang D 2010 Chin. Phys. Lett. 27 034205
[19] Joannopoulos J D, Johnson S G and Winn J N 2008 Photonic crystals:molding the flow of light (Princeton)
[20] Ma J and Jiang C 2008 IEEE J. Quantum Electron. 44 763
[21] Rostami A, Lotfian A, Yadipour R, et al. 2013 J. Opt. Commun. 34 1
[22] Puris D, Schmidt L C, Ludge K, et al. 2012 Opt. Express 20 27265
[23] Ellis B, Mayer M, Shambat G, et al. 2011 Nat. Photon. 5 297
[24] Lægsgaard J, Bjarklev A and Libori S E 2003 J. Opt. Soc. Am. B 20 443
[25] Chang-Hasnain C and Chuang S L 2006 J. Lightwave. Tech. 24 4642
[26] Garrison C, Mitchell M, Chiao R, et al. 1998 Phys. Lett. A 245 19
[27] Taflove A and Hagness S C 2005 Computational Electrodynamics (Boston:Artech House)
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[4] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[5] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[6] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[7] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[8] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[9] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[10] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[11] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[12] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[13] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[14] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[15] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
No Suggested Reading articles found!