Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 074204    DOI: 10.1088/1674-1056/26/7/074204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High quality electromagnetically induced transparency spectroscopy of 87Rb in a buffer gas cell with a magnetic field

Hong Cheng(成红)1,2, Han-Mu Wang(王汉睦)1,2, Shan-Shan Zhang(张珊珊)1,2, Pei-Pei Xin(辛培培)1,2, Jun Luo(罗军)1,2, Hong-Ping Liu(刘红平)1,2
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

We have studied the phenomenon of electromagnetically induced transparency (EIT) of 87Rb vapor with a buffer gas in a magnetic field at room temperature. It is found that the spectral lines caused by the velocity selective optical pump effects get much weaker and wider when the sample cell is mixed with a 5-Torr N2 gas while the EIT signal is kept almost unchanged. A weighted least-square fit is also developed to remove the Doppler broadening completely. This spectral method provides a way to measure the Zeeman splitting with high resolution, for example, the Λ -type EIT resonance splits into four peaks on the D2 line of 87Rb in the thermal 2-cm vapor cell with a magnetic field along the electric field of the linearly polarized coupling laser. The high-resolution spectrum can be used to lock the laser to a given frequency by tuning the magnetic field.

Keywords:  electromagnetically induced transparency      Zeeman effect      coherent interaction  
Received:  16 January 2017      Revised:  09 March 2017      Accepted manuscript online: 
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  32.60.+i (Zeeman and Stark effects)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
  32.70.Jz (Line shapes, widths, and shifts)  
Fund: 

Project supported by the National Key Basic Research Program of China (Grant No.2013CB922003) and the National Natural Science Foundation of China (Grant Nos.91421305,91121005,11674359,and 91436106).

Corresponding Authors:  Hong-Ping Liu     E-mail:  liuhongping@wipm.ac.cn

Cite this article: 

Hong Cheng(成红), Han-Mu Wang(王汉睦), Shan-Shan Zhang(张珊珊), Pei-Pei Xin(辛培培), Jun Luo(罗军), Hong-Ping Liu(刘红平) High quality electromagnetically induced transparency spectroscopy of 87Rb in a buffer gas cell with a magnetic field 2017 Chin. Phys. B 26 074204

[1] Peng A, Johnsson M, Bowen W P, Lam P K, Bachor H A and Hope J J 2005Phys. Rev. A 71 033809
[2] Mompart J and Corbalán R 2000J. Opt. B 2 R7
[3] Liu C, Dutton Z, Behroozi C H and Hau L V 2001Nature 409 490
[4] Karpa L, Nikoghosyan G, Vewinger F, Fleischhauer M and Weitz M 2009Phys. Rev. Lett. 103 093601
[5] Yang Z W and Jiao Y C 2016Acta Phys. Sin. 65 103201(in Chinese)
[6] Slavov D, Sargsyan A, Sarkisyan D, Mirzoyan R, Krasteva A, Wilson-Gordon A D and Cartaleva S Krasteva A, Wilson-Gordon A D and Cartaleva S 2014J. Phys. B 47 035001
[7] Zhao J, Zhu X, Zhang L, Feng Z, Li C and Jia S 2009Opt. Express 17 15821
[8] Wu J C, Liu Z D and Zheng J 2013Chin. Phys. B 22 044203
[9] Mikhailov E E, Novikova I, Rostovtsev Y V and Welch G R 2004Phys. Rev. A 70 033806
[10] Novikova I, Xiao Y, Phillips D F and Walsworth R L 2005J. Mod. Opt. 52 2381
[11] Hakhumyan G, Sargsyan A, Leroy C, Pashayan-Leroy Y, Papoyan A and Sarkisyan D 2010Opt. Express 18 14577
[12] Mikhailov E E, Sautenkov V A, Novikova I and Welch G R 2004Phys. Rev. A 69 063808
[13] Brandt S, Nagel A, Wynands R and Meschede D 1997Phys. Rev. A 56 R1063
[14] Nikolic S N, Radonjic M, Krmpot A J, Lucic N M, Zlatkovic B V and Jelenkovic B M 2013J. Phys. B 46 075501
[15] Liu Z, Wang J Y, Diao W T, He J and Wang J M 2013Chin. Phys. B 22 043201
[16] Sarkisyan D, Hakhumyan G, Sargsyan A, Mirzoyan R, Leroy C and Pashayan-Leroy Y 2010SPIE. 16th International School on Quantum Electronics:Laser Physics and Applications 7747 77470C
[17] Erhard M and Helm H 2001Phys. Rev. A 63 043813
[18] Boudot R, Dziuban P, Hasegawa M, Chutani R K, Galliou S, Giordano V and Gorecki C 2011J. Appl. Phys. 109 014912
[19] Hossain M M, Mitra S, Ray B and Ghosh P N 2009Laser Phys. 19 2008
[20] Mikhailov E E, Sautenkov V A, Rostovtsev Y V and Welch G R 2004J. Opt. Soc. Am. B 21 425
[21] Yang H, Yan D, Zhang M, Fang B, Zhang Y and Wu J H 2012Chin. Phys. B 21 114207
[22] Zheng A, Green A, Crescimanno M and O'Leary S 2016Phys. Rev. A 93 043825
[23] Sargsyan A, Mirzoyan R and Sarkisyan D 2012JETP Lett. 96 303
[24] Sargsyan A, Mirzoyan R, Vartanyan T and Sarkisyan D 2014J. Exp. Theor. Phys. 118 359
[25] Sargsyan A, Sarkisyan D and Papoyan A 2006Phys. Rev. A 73 033803
[26] Jiang X, Zhang H and Wang Y 2016Chin. Phys. B 25 034204
[27] Wei X G, Wu J H, Sun G X, Shao Z, Kang Z H, Jiang Y and Gao J Y 2005Phys. Rev. A 72 023806
[28] Cheng H, Zhang S S, Xin P P, Cheng Y and Liu H P 2016Chin. Phys. B 25 114203
[29] Chakrabarti S, Pradhan A, Ray B and Ghosh P N 2005J. Phys. B 38 4321
[30] Pei L, Lu X, Bai J, Miao X, Wang R, Wu L A, Ren S, Jiao Z, Zhu H, Fu P and Zuo Z 2013Phys. Rev. A 87 063822
[31] Wang M, Lu X G, Bai J H, Pei L Y, Miao X X, Gao Y L, Wu L A, Fu P M, Yang S P, Pang Z G, Wang R Q and Zuo Z C 2015Chin. Phys. B 24 114205
[32] Wang M, Bai J H, Pei L Y, Lu X G, Gao Y L, Wang R Q, Wu L A, Yang S P, Pang Z G, Fu P M and Zuo Z C 2015Acta Phys. Sin. 64 154208(in Chinese)
[33] Wang B, Han Y, Xiao J, Yang X, Xie C, Wang H and Xiao M 2006Opt. Lett. 31 3647
[1] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[2] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[3] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[4] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[5] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[6] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[7] An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening
Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. Chin. Phys. B, 2022, 31(2): 024201.
[8] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[9] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[10] Coherent interaction and action-counteraction theory in small polaron systems, and ground state properties
Zhi-Hua Luo(罗质华) and Chao-Fan Yu(余超凡). Chin. Phys. B, 2022, 31(11): 117104.
[11] Formation of high-density cold molecules via electromagnetic trap
Ya-Bing Ji(纪亚兵), Bin Wei(魏斌), Heng-Jiao Guo(郭恒娇), Qing Liu(刘青), Tao Yang(杨涛), Shun-Yong Hou(侯顺永), and Jian-Ping Yin(印建平). Chin. Phys. B, 2022, 31(10): 103201.
[12] High-resolution three-dimensional atomic microscopy via double electromagnetically induced transparency
Abdul Wahab. Chin. Phys. B, 2021, 30(9): 094202.
[13] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[14] Analysis of asymmetry of the Dα emission spectra under the Zeeman effect in boundary region for D-D experiment on EAST tokamak
Wei Gao(高伟), Juan Huang(黄娟), Jianxun Su(宿建勋), Jing Fu(付静), Yingjie Chen(陈颖杰), Wei Gao(高伟), Zhenwei Wu(吴振伟), and EAST Team. Chin. Phys. B, 2021, 30(2): 025201.
[15] Theoretical calculations of hyperfine splitting, Zeeman shifts, and isotope shifts of 27Al+ and logical ions in Al+ clocks
Xiao-Kang Tang(唐骁康), Xiang Zhang(张祥), Yong Shen(沈咏), and Hong-Xin Zou(邹宏新). Chin. Phys. B, 2021, 30(12): 123204.
No Suggested Reading articles found!